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The canonical quantization formalism is applied to the Lagrange density of 
chromodynamics, which includes gauge fixing and Faddeev-Popov ghost terms 
in a general covariant gauge. We develop the quantum theory of the interacting 
fields in the Dirac picture, based on the Gell-Mann and Low theorem and the 
Dyson expansion of the tfme evolution operator. Tt/e physical states are charac- 
terized by their invariance under Becchi-Rouet-Stora transformations. Sub- 
sequently, confinement is introduced phenomenologically by imposing, on the 
quark, gluon, and ghost field operators, the linear boundary conditions of the 
MIT bag model at the surface of a spherically symmetric and static cavity. Based 
on this formalism, we calculate, in the Feynman gauge, all nondivergent Feynman 
diagrams of second order in the strong coupling constant g. Explicit values of 
the matrix elements are given for low-lying quark and gluon cavity modes. 

1. I N T R O D U C T I O N  

Dur ing  the last  d e c a d e  q u a n t u m  c h r o m o d y n a m i c s  (Yang  and  Mills ,  
1954; Fr i tzsch  et al., 1973; Gross  and  Wilczek,  1973a,b; Poli tzer ,  1973) has 
emerged  as the  l ead ing  c a n d i d a t e  for  a theory  o f  s t rong in te rac t ions  o f  
quarks  a n d  gluons.  Due  to a sympto t i c  f r e edom (Gross  and  Wilczek,  1973a,b; 
Pol i tzer ,  1973), pe r tu rba t ive  q u a n t u m  c h r o m o d y n a m i c s  has  had  cons ider -  
ab le  success  in desc r ib ing  h a d r o n i c  phys ics  at  h igh energies.  In  the low- 
energy reg ion  (be low a few GeV),  however ,  the  runn ing  coupl ing  cons tan t  
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ces(Q 2) becomes large and nonperturbative effects (e.g., instantons, gluon 
condensation) cannot be neglected. The current belief is that this nonper- 
turbative behavior, which is strongly enhanced by the non-Abelian character 
of the gauge group SU(3)color  , and still remains to be understood, leads 
eventually to the confinement of the color-carrying constituents in the 
hadron. 

In the past, confinement has been incorporated into the theory using 
phenomenological models. The simplest of this kind is the MIT bag model 
(Chodos et  al., 1974a,b; DeGrand et  al., 1975; Johnson, 1975), in which 
boundary conditions are imposed on the quark and gluon fields at an 
arbitrary spacelike surface, preferably a static sphere. Of course, such a 
phenomenological approach to the theory of strong interaction is not very 
attractive, particularly because the confinement property is probably already 
contained in the theory as we perceive it today. Moreover, there are many 
other ways to achieve quark and gluon confinement (Bardeen et al., 1975; 
Friedberg and Lee, 1977a,b, 1978; Vento et  al., 1980; Miller et  al., 1980; 
Th6berge et  al., 1980; Thomas et  al., 1981). The advantage of imposing 
boundary conditions on the field operators, however, is that with a minimal 
number of modifications, we can incorporate confinement and at the same 
time retain most of the properties of the underlying gauge theory. Thus, 
the purpose of this paper is to show that it is indeed possible to formulate 
a consistent quantum field theory in such a cavity. The hope is, of course, 
that perturbative quantum chromodynamics in this cavity is a reasonable 
approximation to the real hadronic world. 

In Section 2, we review the classical non-Abelian gauge theory (Yang 
and Mills, 1954; Fritzsch et  al., 1973). The local gauge invariance of 
chromodynamics is broken in a Lorentz-invariant way in order to obtain a 
local and well-defined Hamilton formulation of the theory that is suitable 
for quantization. Introducing the Faddeev-Popov (1967) ghost term into 
the Lagrange density, we enlarge the set of the elementary fields by two 
anticommuting real Grassmann fields that describe the unphysical ghosts. 
Subsequently, we discuss in some detail the so-called Becchi-Rouet-Stora 
(1974, 1976) (BRS) invariance of the modified theory. This global BRS 
invariance, which involves the ghost fields and replaces the broken local 
gauge symmetry, appears in a quite natural way in a modern geometrical 
formulation of the gauge theory. After a discussion of the classical field 
equations and the canonical conjugate momenta, we evaluate the Hamilton 
density and identify the various interaction terms. We conclude Section 2 
with a review of the symmetries of chromodynamics. Here we do not attempt 
to describe all of the invariances of the theory, such as isospin symmetry 
for equal-mass quarks or chiral symmetry for massless quarks. We instead 
concentrate on the symmetries that are related to the gauge character of 
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chromodynamics. Finally, the conserved current densities and the charges 
associated with these symmetries, in particular the Becchi-Rouet-Stora 
(BRS) and the ghost charge, are briefly discussed. 

In Section 3, the theory is quantized using the canonical formalism, 
and the consistency of the quantization rules is checked by evaluating the 
commutation relations of the field operators with the Hamilton operator 
explicitly. As expected, these turn out to be consistent with the field 
equations and the definition of the canonical conjugate momenta. We also 
determine the commutators involving the Hamiltonian, the BRS charge, 
and the ghost number operator, and assure the nilpotency of the BRS charge. 
Subsequently, the field operators are transformed into the interaction picture 
in which the field operators satisfy the noninteracting field equations. Based 
on Dyson's expansion and the Gell-Mann and Low (1951) theorem, we 
derive the eigenvectors and eigenvalues of the full Hamilton operator as a 
perturbative expansion of the time evolution operator. We then turn to the 
definition of physical states that have nonnegative norm in order to guarantee 
a consistent probabilistic interpretation of the quantum field theory. Recog- 
nizing that the Gupta (1950)-Bleuler (1950) condition cannot be used in 
non-Abelian theories, we define the physical states as the ones that are 
BRS-invariant (Kugo and Ojima, 1979). In this physical subspace matrix 
elements of gluon field operators satisfy the generalized Maxwell equations. 
We also discuss briefly the physicality condition for the asymptotic states. 

In Section 4, we impose on the field operators the linear boundary 
conditions of the MIT bag model (Chodos et al., 1974a; Hansson and Jaffe, 
1983; Goldhaber et al., 1983, 1986), thus introducing confinement by hand. 
The boundary conditions turn out to be compatible with the field equations 
and the symmetries of quantum chromodynamics, including the BRS- 
invariance and the ghost charge conservation. Subsequently, the field 
operators are expanded in terms of the cavity modes of a spherically 
symmetric and static cavity, the expansion coefficients being the usual 
creation and annihilation operators for the various fields. Expressing the 
relevant part of the BRS charge in terms of these creation and annihilation 
operators, we find a close relationship between the Gupta-Bleuler condition 
and the physicality criterion for the asymptotic states we use here. Finally, 
we arrive at a representation of the noninteracting Hamilton operator that 
assures that only the physical degrees of freedom contribute to the energy 
of an asymptotic physical system. 

In Section 5, we discuss cavity quantum chromodynamics up to second- 
order perturbation theory. On the example of the quark-quark interaction 
through one-gluon exchange, we illustrate the necessary steps in obtaining 
the energy shifts from the perturbative expansions given in Section 3. 
Subsequently, we discuss all nondivergent interactions for particles that 
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occupy the lowest energy cavity modes: the quark-quark, antiquark-anti- 
quark, and quark-antiquark interactions via one-gluon exchange and the 
quark-antiquark interaction through virtual annihilation into a gluon. We 
also evaluate the quark-gluon and antiquark-gluon interaction through the 
Compton diagram and one-gluon exchange and, finally, the gluon-gluon 
interaction mediated by the one-gluon exchange, the virtual annihilation 
into a gluon, and the elementary four-gluon vertex. The results are compared 
whenever possible with similar calculations of other groups. Finally, in 
Section 6, we draw some conclusions and discuss briefly the consistency of 
this quantum field theory. 

In Appendix A, we determine the cavity modes that are used to expand 
the various field operators in Section 4. These cavity modes satisfy the 
classical, noninteracting (g = 0) field equations of chromodynamics in the 
Feynman gauge together with the boundary conditions of Section 4. Appen- 
dix B contains a complete list of the Feynman propagators. In Appendix 
C, we evaluate the numerous integrals that arise at the various vertices and 
define the vertex functions. The bulk of the calculations of the two-particle 
energy shifts can be found in Appendix D. Here we discuss the two-body 
energy shift operators in first and second quantization for particles with 
arbitrary quantum numbers as well as the simplifications for low-energy 
cavity modes. Finally, Appendix E summarizes our conventions. 

2. THE CLASSICAL THEORY 

2.1.  Introduct ion  

In order to establish the notation, let us start with a brief introduction 
to chromodynamics, the classical field theory that is based on the non- 
Abelian gauge group SU(3)color. This renormalizable field theory can be 
derived from the locally gauge invariant Lagrange density (Yang and Mills, 
1954; Fritzsch et al., 1973) 

~gauge = O( i y ,  D ~ - M ) O - ~ F ~ , v "  F "v (2.1) 

The interactions between quarks and gluons are determined by the covariant 
derivative, which depends on the strong coupling constant g 

D'~O = (a" - i g k / 2 .  A~')O (2.2) 

and the gluon self-interaction originates from the term containing the 
chromoelectromagnetic field F ~'~, which can be expressed in terms of the 
real gluon fields A ~ as 

F ~'~ = a~A ~ - 0"A ~" + gA ~ x A ~ (2.3) 
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The antisymmetric field strength tensor F "~ and the covariant derivative 
D r are connected by the Bianchi identity 

[ D  r, D ~ ] = - � 8 9  F "~ (2.4) 

In equations (2.1)-(2.4) we have made use of the eight-dimensional scalar 
and vector products operating in the color space of the gluons 

8 

A . B =  E AaB,~ (2.5) 
a = l  

and 

8 

(A x B)a = E f ,  bb'AbBb' (2.6) 
b,b'= 1 

respectively, The indices a, b, and b' describe the eight color degrees of 
freedom of the gluon, the fobb' being the structure constants of SU(3)color, 
and the h~ denote the eight Gell-Mann matrices. 

The symbol 4' denotes a large column consisting of the complex quark 
fields r where the labels c,f, and a stand for the various color (c = 1, 2, 3), 
flavor ( f =  1 , . . . ,  6), and Dirac (a  = 1, 2, 3, 4) indices. The mass matrix M 
is diagonal in these labels and depends only on the flavor label of the 
quarks, i.e., 

Mc,f,,,~ ;~,~r,,,~, = ~cc'6fr6aa,mf (2.7) 

where my denotes the mass of the quark with flavor f 
The Lagrange density (2.1) is, by construction, invariant under 

infinitesimal local gauge transformation of the fields ~ and A ", 

~b ~ ~b'= ( 1 - � 8 9  t o ) 6  
(2.8) 

! _ _  A,~ ~ A,~ - A ,  - e A~  • to - ( e / g )  O, to 

where e denotes an infinitesimal, real, constant parameter and to is a real, 
space-t ime-dependent function. 

2.2. Gauge Fixing and BRS Invariance 

It is well known that the Lagrange density (2.1) is not suitable for the 
quantization of the classical gauge theory. This is intimately related to the 
gauge freedom (2.8), as can be seen either in the path integral formalism 
or, in the case of canonical quantization, by the vanishing canonical conju- 
gate momentum II ~ of A ~ In order to obtain a consistent quantum theory, 
we must choose a gauge and therefore break the local gauge invariance 
(2.8) of  the Lagrange density (2.1). The standard approach is to add to 
(2.1) a covariant gauge-fixing term which is globally gauge invariant, 

~nx = -�89 O,,A " .  &A ~ (2.9) 
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Here A is a real parameter characterizing the gauge. The broken local gauge 
invariance can be substituted by the so-called Becchi-Rouet-Stora (1974, 
1976) (BRS) invariance, which is usually introduced with the help of path 
integrals. The following derivation may seem more elementary. 

Under a local gauge transformation (2.8) the variations of  A~, and ~nx 
are 

(2.10) 
~ g ~ x  = ( a e / g )  O~A ~ .  0~@ ~ ~o 

where we have introduced the covariant derivative in the adjoint representa- 
tion of  the gauge group 

~ , t o  = a~to + gA~, x to (2.11) 

Thus, if we constrain the gauge phases to to satisfy 

O ~ c o  = 0 (2.12) 

ZPfix is indeed invariant. This constraint can easily be included in the 
Lagrange density using the well-known method of Lagrange multipliers. 
Thus, by adding the so-called Faddeev-Popov ghost term 

~ghost  = i x '  0/, ~ ' t o  (2.13) 

we arrive at the total Lagrange density 

~ ' =  ~gauge"{- ~(~fix"[- =af~ghost (2.14) 

In equation (2.13) the Lagrange multipliers for the subsidiary condition 
(2.12) have been denoted by i x . 

Of course, the additional terms 5ffi x and ~fghost change the physical 
properties of the system we want to describe. In a consistent theory, every 
field that appears in the Lagrange density must be a dynamical field, giving 
rise to the corresponding particles in the quantum version of the theory. 
Hence, the Lagrange density (2.14) describes a theory of  quarks, gluons, 
and the new to and X ghosts. A similar situation occurred in the transition 
from global to local gauge invariance, where the gauge bosons appeared 
as new particles. 

We can now design a transformation of  the fields q~, A~,, to, and X that 
leaves the Lagrange density (2.14) invariant. Demanding that it resembles 
an infinitesimal local gauge transformation for the quark and gluon fields, 
we are led to 

8~b = - � 8 9  " totp 
(2.15) 

8~A~ = - ( ~ / g ) ~  
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This t ransformat ion  leaves ~gauge of  equat ion (2.1) invariant. Moreover ,  
since equat ion  (2.12) is one o f  the field equat ions that  can be derived f rom 
the Lagrange density (2.14), it must  be invariant  as well, 

S~(O,,@"m) = Oj,(6~~ = 0 (2.16) 

We thus conclude  that  8,Lf'= 0 implies 

6~X = ie( h / g)  a . A  ~ (2.17) 

The crucial step is now to define the variat ion o f  the field to such as to 
satisfy equa t ion  (2.16). We will in fact d e m a n d  the even stronger condi t ion 

0 = a , ~ , ~  = ~ , ( 6 ~ )  - ( e ~ , t o )  x co (2.18) 

The second part  of  equat ion (2.18) is a consequence  o f  the gluon field 
variat ion (2.15) and the definition o f  the covariant  derivative (2.11). Inter- 
preting equa t ion  (2.18) as a differential equat ion for 3~to and solving it with 
s tandard  methods  yields a nonloca l  result for 6~to. This unpleasant  feature 
can be avoided  if we take the parameter  e and the componen ts  o f  to in the 
classical theory  to be an t icommut ing  numbers .  4 In  this case, equat ion (2.18) 
can be rewrit ten as 

~.8~to = e ( ~ ,  to) X m = � 8 9  (to X to) (2.19) 

A simple and local solut ion o f  this equat ion takes the form 

1 a~to = ~eto x m (2.20) 

where, due to the ant icommutat ivi ty ,  the cross p roduc t  to x to does not  
vanish. 

2.3. Lagrange and Hamilton Densities 

Let us now int roduce a new Lagrange density ~ that differs f rom 
equat ion (2.14) by a four-divergence that does not  contribute to the field 
equations,  

= t f f ( iy~D ~ - M ) 6  - � 89  Or - 1/4F,~ �9 F ~ 

- � 8 9  O~A ~ �9 O,,A" - iO~x �9 @ ~ m  (2.21) 

4One is reminded of a similar situation in the "'derivation of the Dirac equation." There, it 
was possible to replace the nonlocal square root of the Klein-Gordon operator "([~ + m2) t/2'' 
by the local Dirac operator i3'ua ~ - m with the help of the 3' matrices, which satisfy anticommu- 
tation relations. 
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The BRS transformation of the fields, which we have found to be 

a~O = - � 8 9  " t o~  

6,A~, = - (  e / g ) ~ ,  to 
(2.22) 

t~to 1 =~EtoX~ 

~X = ie(~/g) a~A ~ 

changes ~ by a four-divergence 

a~ = ~(~/g) a~[a~A ~. ~] (2.23) 

that leaves the field equations invariant. Thus, the BRS invariance of the 
action can be used to replace the broken local gauge invariance. Even 
though it is a global symmetry (e is space-time independent), it is sufficient 
to guarantee the validity of the Ward-Slavnov-Taylor identities (Slavnov, 
1972; Taylor, 1971) that are necessary for the renormalizability ('tHooft, 
1971a,b; Becchi et al., 1974, 1976) of the corresponding quantum theory. 
The BRS parameter e and the Faddeev-Popov ghost fields to and X are 
Grassmann numbers, satisfying the anticommutation relations 

{~, ~} = {~, goa} = {~, x, ,}  = o 
(2.24) 

{O')a, gOb} = {O')a, Xb} = {Xa,  Xb} = 0 

Moreover, these fields commute with the real gluon fields A~ and anticom- 
mute with the quark fields Ocy~, which, for consistency, must be assumed 
to be complex Grassmann fields as well. The factor i i n  front of the ghost 
term in (2.21) ensures that the Lagrange density ~ is real in the classical 
theory (corresponding to a Hermitian Lagrange density in the quantum 
theory), if we use the convention (Kugo and Ojima, 1979) 

gO*=gOo, x * = x o  (gOoXb)*----XbgOo* * = --gOoXb (2.25) 

i.e., gOa and X, are real Grassmann numbers. The consistency of the BRS 
transformation with the rules for comPlex conjugation of Grassmann vari- 
ables requires the parameter e in (2.22) to be an imaginary Grassmann 
number 

e* = - e ,  (egO,)* = gO*e* = egoa (2.26) 

An important property of the BRS transformation, worth noticing already 
at this stage, is its nilpotency. Using the relations (2.22), it is easily verified 
that for any field ~b 

6~,(6~26) = 0 (2.27) 

even though the product ele 2 does not vanish in general (el # e2). 
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The Lagrange density (2.21) can be separated into a g-independent or 
"free" part, which describes the "free" quark, gluon, and ghost fields 

=LPo(~b~ , 0~b~) = ~(�89 ~ - M)O -�88 -0~A~) �9 (0~A ~ -0~A ~) 

-�89 O~ A ~. O~A ~- ic?~X " O" a~ (2.28) 

with "0~= 0~-0~, and a g-dependent or "interaction" part 

~i,t(~b,, 0~bi) = �89 A ~ -�89 ~ -0~A~) �9 (A N • Av) 

- l g 2 ( A " x A ~ ) . ( A ~ x A , ) - i g O , x . ( A " x t o )  (2.29) 

which describes respectively the two-quark-one-gluon, three-gluon, four- 
gluon, and two-ghost-one-gluon couplings. 

By applying the Euler-Lagrange equations to the Lagrange density 
(2.21), we readily arrive at the Dirac equations for the quark fields 

( i T . D " -  M)~=O 
(2.30) 

~(iT~/)~* + M) =0 

and for the corresponding field equations for the gluon field we obtain 

@~F~ +lg~7~h~b + hO~ OvAl+ ig O~xXto=O (2.31) 

where the last two terms originate from the gauge fixing and ghost terms, 
respectively. By varying the Lagrange density (2.21) with respect to the 
ghost fields, we arrive at the field equations for the ghost fields 

O~@"to = 0 (2.32) 

~ . O ~ x = O  ( 2 . 3 3 )  

In order to write down the Hamilton density, we need to evaluate the 
canonical conjugate momenta of the interacting quark, gluon, and ghost 
fields. For the quark fields we readily obtain 

~r = o ~ e l o 6  = - �89  + 

(2.34) 
7? = O~/O0 = - �89 + 

and for the gluon fields we arrive at 

H k = O~-q~/O.~k = F k~ k = 1, 2, 3 
(2.35) 

11 ~ = a&P / a Ao = - x a , , A  ~" 

Thus, as we mentioned earlier, without the gauge-fixing term present in the 
Lagrange density (2.21), the zeroth component of the canonical conjugate 
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momentum would vanish and eventually lead to an ill-defined Hamilton 
density. Moreover, the addition of the four-divergence involving the quark 
fields in equation (2.21) was necessary to obtain a nonvanishing canonical 
conjugate momentum ~-. The canonical conjugate momenta of the ghost 
fields are given by 

X = a 5 r  = - i@otO 
(2.36) 

= a ~ e / a ~  = i x  

The positive sign in the last equation results from the anticommuting 
character of the Grassmann fields toa and Xa and the definition of the 
derivative with respect to a Grassmann field. The dependence of the conju- 
gate momenta on the coupling constant g in equations (2.35) and (2.36) 
arises from the derivative couplings in the original Lagrange density and 
is often a major source of confusion. 

We now turn to the evaluation of the Hamilton density, which is defined 
as 

a l l  . a L l  . a l l +  a L f + ~  a ~  Lf 
Y~= ---~O~0 q~+ ~0-~-+A~. OJ~ X "--ox " "---o~ (2.37) 

where the negative sign in the first term is due to the Grassmann character 
of the quark fields. ~ is a function of the fields, the spatial derivatives, and 
the corresponding canonical momenta; it no longer depends on the time 
derivatives of the fields. We must thus replace all time derivatives of the 
fields by the corresponding canonical momenta, some of which will depend 
on the strong coupling constant g. The Hamilton density can now be split 
into a part that does not depend on the coupling constant g explicitly 

Y(o = ~(--�89 "~k + M ) q / +  �88 a~Ak) " ( akA ' -O ,A  k) +�89 k. I I  k 

- (1/2A)II ~ H ~  k. akA~  ~ akA k - i l ~ .  X - i O k x  �9 ak~  (2.38) 

and an interaction term that depends linearly and quadratically on the 
coupling constant g 

~int : -- lgl~')/,~-I//" A '~ - �89 - a,Ak) �9 (A k x A') 

-- g H  k .  (A k • A ~ + ~gZ(Ak X At) �9 (A k • A t) 

+ g l~-  (A ~ x to) + igOkx" (A k x to) (2.39) 

The various terms in equation (2.39) describe respectively the two-quark- 
one-gluon, three-gluon, four-gluon, and two-ghost-one-gluon interactions 
(Figure 1). Note that, due to the derivative couplings in the Lagrange density 
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> ? X 
(a) (b) (el [d) 

Fig. 1. The vertices describing the emission (or absorption) of a gluon by (a) a quark, (b) a 
ghost, and (c) a gluon and (d) the elementary four-gluon vertex. 

(2.29), Y(i.t differs from -s and we have 

~i,t  = -~i,t(~b,, 0~,~b,) - �89176 x Ak) �9 (A ~ x A k) (2.40) 

2.4. Conserved Currents 

Let us now briefly discuss some of the invariances and conservation 
laws of the theory given by the Lagrange density (2.21). The global Abelian 
phase transformation of  the quark fields alone leads to the conserved 
Noether  current 

J ~  = 4 7 ~ ;  a J ~  = 0 (2.41) 

thus ensuring the conservation of the quark number. The color-carrying 
quark current, however, is not conserved; instead, it is conserved covariantly, 
in the sense of  the gauge group 

J ~  = �89 ~ . J ~  = 0 (2.42) 

The nonconservation of J ~  reflects the fact that quarks are not the only 
color-carrying particles of  the theory. 

Even though the Lagrange density (2.21) is not invariant under a local 
gauge transformation,  a global (space-t ime-independent)  gauge transforma- 
tion is still a good symmetry of the theory. The corresponding Noether  
current reads 

J ~ = �89 ~.O + F m" x A,. + AO,,A" x A ~" + ia~x  x ~ - i x  x ~ ' t o  
(2.43) 

3 , J ~  = 0 

and leads to color conservation. As we have demonstrated above, the BRS 
transformation leaves the action of chromodynamics invariant. Taking due 
account of  equation (2.23), the associated current is easily found to be 

J~ = ~ .  ( ~ F  v~* + �89 k ~b + �89 ig O~*X x r + a ~ * o J  �9 O~A ~ 

a~,J~ = 0 (2.44) 



936 Buser, VioUier, and Zimak 

Here, we have omitted a term o f  the form 0~(to �9 F"~), which is conserved 
by itself and does not  contr ibute to the charge upon  integration. 5 The 
resulting conserved charge 

QB=f d3xj~ d3x[to'(~kHk+�89176 (2.45) 

is a real Grassmann  number ,  called the BRS charge;  it is o f  great impor tance  
in the quant ized theory. 

Finally, the Lagrange density (2.21) is invariant under  a symmetry  
t ransformat ion  that  involves the ghost  fields to and X only, similar to the 
Abel ian phase  t ransformat ion  of  the quark  fields. Of  course, since the ghost  
fields are real Grassmann  numbers ,  we are not  al lowed to per form a complex  
phase  t ransformat ion  u p o n  them. However ,  the fol lowing scale t ransforma-  
t ion is admissible (Kugo  and Ojima, 1979): 

to ~ e ~ X ~ e-~ (2.46) 

where O is a real, space- t ime- independent  number.  As a consequence,  we 
find 

J ~  = iO"x  �9 t o -  i x �9 ~ t o ;  O~J~ = 0 

giving rise to the conservat ion o f  the ghost  charge 

oc= f d3xj~ f d3x(ll.to+x.X ) 

(2.47) 

(2.48) 

3. T H E  Q U A N T I Z E D  T H E O R Y  

3.1. Canonical  Quantizat ion 

In the preceding section, we developed a Hamil tonian  formulat ion o f  
ch romodynamics  that  is suitable for the quant izat ion o f  the theory. Rather  
than relying on the usual  pa th  integral methods,  we want  to apply the 
canonical  quant izat ion formalism to the Hami l ton  densities ~0 and ~i,t as 
given in equat ions (2.38) and (2.39). We thus impose  the equal-t ime ant icom- 
muta t ion  and commuta t ion  relations for  the quark  and the Hermit ian gluon 

5Even though 0~(to �9 F ~)  is conserved due to the antisymmetry of F ~ ,  it does not necessarily 
lead to a well-defined charge in the quantized theory. In the general case, it should therefore 
be kept in the BRS current in order to obtain a well-defined BRS charge. The existence of 
this charge is assured by the assumption that the BRS symmetry remains unbroken in the 
quantized theory. However, in view of the boundary conditions (4.8), the charge corresponding 
to d~(to �9 F g~) is well defined and integrates to zero in the finite-volume theory. 
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field operators, respectively: 

+ ~(3)(x {t)cy~(x, t), 0c,y,~'(Y, t)} = ~ c ~ , ~ , o  , - y )  (3.1) 

[A~(x, t), II~,(y, t)] = ig~8~bg(3)(x--y) (3.2) 

The Hermitian ghost field operators must satisfy anticommutation relations, 
since they are described in the classical theory by real, anticommuting 
color-octet and spin-zero Grassmann fields 

{~oa(x, t), fib(Y, t)} = --iS.b~(3)(x--y) (3.3) 

{Xa(X, t), Xb(y, t)} = --iS~b~(3)(X --y) (3.4) 

Here it is understood that all commutators of the gluon field operators, all 
anticommutators of the quark and ghost field operators, and all commutators 
involving gluon and quark or ghost field operators that have not been written 
down explicitly vanish. 

As a consistency check, we can evaluate the commutation relations of 
the field operators and the corresponding canonical momenta with the 
Hamilton operator defined as 

H = H o ( t ) + H i n t ( t ) :  I d3x f fgo (X , t )+ f  a3x~int(X, t )  (3.5) 

Here ~~ t) and ~ , t (x ,  t) are formally given by (2.38) and (2.39), but 
now the fields must be interpreted as field operators. If the quantization 
rules are correct, these commutators and anticommutators must yield 
Heisenberg equations of motion that are equivalent to the Euler-Lagrange 
equations for the field operators. Indeed, using the anticommutation rela- 
tions (3.1), the commutators for the quark field operators turn out to be 

[0, H] = "y~ d- M~b- �89 A~ . kO )= i~ (3.6) 

[~b +, H]  = - iOk~3~ k - ~ M  + �89 A ,  �9 k = i~ + (3.7) 

which are equivalent to the Dirac equations (2.30). Based on the commuta- 
tion relations for the gluon field operators (3.2), we arrive at 

[A ~ H]  = i[-OkA k -  (1/A)II ~ = / ) t  o (3.8) 

[A k, H]  = i ( - I I  k -OkA~ q- g A  k x A  ~ = iA k (3.9) 

consistent with the definition of the canonical conjugate momenta (2.35). 
Moreover, the commutators of the canonical momenta with H yield 

[H ~ H]  = i ( - -~k l I  k + �89176 + g l l  • to) = i[I ~ (3.10) 

[Hk, H]  = i ( N t F k t + O k H ~ 1 7 6 1 8 9  igOkXXt~) = i l l  k (3.11) 
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which are equivalent to the field equations for the gluons as given in 
equations (2.31). Finally, using the anticommutators (3.3) and (3.4), the 
ghost field operators are easily shown to satisfy 

[to, H]  = - X -  igA~ x to = idJ (3.12) 

[X, H]  = 1"~ = ix (3.13) 

consistent with the definition of the canonical conjugate momenta (2.36). 
Similarly, the commutators of the canonical momenta with the Hamilton 
operator turn out to be 

[1"~, H] = ~kOkx-~" ig~ xA ~ = il~ (3.14) 

[X, HI  = --Ok~kto = i)( (3.15) 

which are equivalent to the field equations for the ghosts as given in 
equations (2.32) and (2.33). 

The BRS transformation (2.22) can be described in the quantized theory 
with the help of the corresponding generator, the BRS charge, (2.45). Using 
the canonical commutation and anticommutation relations (3.1)-(3.4), we 
can show that 

[ieQ~, F] = g6~F (3.16) 

for any field operator F, where ~ F  is given by equations (2.22). Note that 
e anticommutes with the operators 0, to, and X. 

In analogy with the decomposition of the Hamiltonian (3.35), we can 
separate QB into 

Qn = Qo( t) + Qint(t) (3.17) 

Here, Qo(t) is independent of the strong coupling constant g, 

Qo( t) = f d3 x (to" Ok I I k  -- iX .II ~ (3.18) 

and Qint(t) is proportional to g, 

Qint(t)=g f d3x to. (Ak xW+lq,+Xq,+�89 (3.19) 

The nilpotency (2.27) of the BRS transformation is now reflected in the 
anticommutators 

{Qo(t), Qo(t)} = 0 

{Qo(t), Qi.t(t)} = 0 
(3.20) 

{ Qint(t), Qint( t)} =0  

{ Q~, Q~} = 0 
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whereas the commutators with the Hamiltonians 

[Oo(t ) ,  Ho(t ) ]  = 0 

[Q0(t), Hint(t)] : -[Qint(/), Ho(t)] (3.21) 

[Qint(t), Hint(t)] =0 

assure the BRS invariance of the Hamilton operator (3.5). 
Evaluating the commutators of the ghost charge operator QG, equation 

(2.48), with the various field operators, we find that the only nonvanishing 
results are given by 

[Qo,  ~ ]  = ito, [Q~,  x] = - i x  
(3.22) 

[Qo, l-l] = - i a ,  [QG, X] = iX 

As a consequence, the eigenvalues of the Hermitian operator QG turn out 
to be purely imaginary. This rather strange fact is related to the indefinite 
metric of the Fock space. We will comment on this in Section 3.3. Equations 
(3.22) imply that the fields to and X carry ghost number NG=--iQG = 1, 
while X and ~ carry ghost number NG =--iQG =--1. In this notation, the 
BRS charge has ghost number NG = 1, 

[QG, Oo(t)] = iQo(t) 
(3.23) 

[QG, Qint(t)] = iQint(t) 

and the Hamilton operator obviously has NG = 0, 

[Qa, Ho(t)] = [QG, Hint(t)] =0 (3.24) 

due to the conservation of the ghost charge. 

3.2. Interaction Picture 

With the quantization, the fields have become operators in the 
Heisenberg picture that satisfy the Heisenberg equations of motion with 
the full Hamilton operator H in the commutator, i.e., 

0 
i - -  F(x, t) = [F(x, t), HI (3.25) 
Ot 

The state vectors that define the Fock space in which the operators act are 
time-independent in the Heisenberg picture 

0 
i - - I~}=0 (3.26) 
Ot 
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It is useful to transform all the state vectors and the field operators into 
the interaction or Dirac picture using a unitary transformation U(t) in the 
Fock space. This transformation satisfies the differential equation 

O 
i - -  U( t) = U( t)t-I~nt( t ) (3.27) 
at 

Thus, a Heisenberg state [$) transforms into a Dirac state I~(t)) via 

I~(t)): U(t)[~) (3.28) 
and a general Heisenberg operator F(x, t), which depends on x and t via 
the field operators, the spatial derivatives, and the canonical conjugate 

A 

momenta, transforms into a general operator F(x, t) in the interaction or 
Dirac picture according to the equation 

/~(x, t )=  U(t)F(x ,  t )U- l ( t )  (3.29) 

Under this transformation all functional relations between field operators 
remain unchanged as long as they are expressed in terms of the field 
operators, the spatial derivatives, and the canonical momenta instead of 
the time derivatives. Thus, all canonical commutation rules (3.1)-(3.4) and 
also the Hamilton densities (2.38) and (2.39) remain invariant. However, 
the field equations and the relations between the canonical momenta and 
the time derivatives of the field operators are different in the Dirac picture, 
since we now have 

O A ,,, 

i - -  F(x, t) = IF(x,  t), H0] (3.30) 
Ot 

for the time evolution of an operator and 

i~t I~(t)) =/4int(t)l~(t)) (3.31) 

i.e., the Schr6dinger equation, for the time evolution of a state vector in 
the interaction picture. The defining relation for U(t), equation (3.27), can 
be rewritten with the help of (3.29) as 

a A 
i - -  U(t)  = Hint(t) U(t) (3.32) 
Ot 

Omitting the g-dependent terms in equations (3.6)-(3.15) according to 
(3.30), we can easily show that in the Dirac picture the field operators satisfy 
the noninteracting field equations, i.e., 

(iT~O ~ - M ) ~  = ;(i,y~a~ + M) = 0 (3.33) 

D,A" + (h - 1)0~0~,A ~ = 0 (3.34) 

I--qt~ = D~ = 0 (3.35) 
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A transformation between solutions to the field equation (3.34) with different 
nonzero values of A is obtained by setting 

^ ~ [ 1  1 \  ,, 
A~2 = A~, + ~-~2 - ~-~l) 0~ ~ (3.36) 

where ~ is given by 
A A A 

?-1~ = A,0,A~, = A20gA~ 2 (3.37) 
A A / ~  

Here, A~, and Ax 2 satisfy equation (3.34) with A replaced by AI and A2, 
respectively. Similarly, the field operators and the canonical conjugate 
momenta are related in the interaction picture by 

fik = ok~O_ 00~k I~I 0 = - A 3 , A  ~ (3.38) 
�9 ^ . ^ 

= -1OotO, 1~ = ta0X (3.39) 

while the corresponding relations for the quark field operators, which do 
not involve time derivatives, remain unchanged and are thus given by 
equations (2.34). Based on equations (3.38) and (3.39), we easily arrive at 
the somewhat surprising relation 

~ i n t = _ _ ~ i n t ( ~ i  ' ~ 1 2 ^ 0  ~ Ogcbi)+~g (A xAk) �9 ( A ~  k) (3.40) 

where the second term is due to the presence of derivative couplings in the 
^ A A 

Lagrange density (2.29). In this equation, ~nt  and ~9?int(6i , 3gdpi ) are defined 
by equations (2.39) and (2.29), respectively, but now the arguments have 
been replaced by operators in the Dirac picture. Note that equation (2.40), 
which is the corresponding equation in the Heisenberg picture, differs from 
equation (3.40) in the sign of the second term. 

We now introduce the so-called time-evolution operator U(t, to), which 
is related to the unitary transformation U(t) in (3.27) or (3.32) by 

U( t, to) = U( t) U- ' (  to) (3.41) 

The time-evolution operator U(t, to) satisfies the same differential equation 
(3.32) as U(t), 

0 
i - -  U(t, to) = ~ , t ( t )  U(t, to) (3.42) 
Ot 

together with the initial condition 

U(to, to) = ~ (3.43) 

In contrast to the unitary transformation U(t), the time evolution 
operator acts completely in the Dirac picture. Using the time independence 
of the Heisenberg state vectors (3.26) and equation (3.28), we arrive at 

]~(t)) = U(t, to)J~(/o)) (3.44) 
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justifying the name "time-evolution operator" for U(t, to). Of course, 
equations (3.44) and (3.42) are equivalent to the Schr6dinger equation 
(3.31). The full quantum theory is now contained in the operator U(t, to). 
The solution of the differential equation (3.42) with the initial condition 
(3.43) is given by Dyson's expansion in terms of n-dimensional integrals A 
which involve time-ordered T-products of Hint(t), 

I t U~(t, to) ~ (-i)n It dtl dtn T(/-t~nt(tl) ~-e . . . . . . .  /-/int(tn)) (3.45) 
,,=o n! Jto to 

Here we have introduced the usual adiabatic switching on of the interaction 

/~ient ( t )  = e-~ltl/'~int(t) ( 3 . 4 6 )  

where e is a small, positive quantity which makes it possible to study the 
limits of U(t, to) for t, to~ +oo as well. 

We now want to determine the eigenstates and eigenvalues of the full 
Hamilton operator 

/-t(0) =/-to+/-lint(0) (3.47) 

Let [r be a complete and orthonormal set of eigenvectors of the noninter- 
acing Hamiltonian Ho in the Dirac picture, E(~ ~ being the eigenvalues, i.e., 

A 
/~rol~k ) = E (~ (3.48) 

If the state vector given by 

w(o, IG) = lira , (3.49) 

exists to all orders, then, due to the Gell-Mann and Low (1951) theorem, 
I~k) is an eigenstate of the full Hamilton operator /q(0) with the energy 
Ek, i.e., 

/'~(O)[~t~tk) = [ / - to - l - /~ in t (O) ] l~k)  = Ek[~k) (3.50) 

Multiplying this equation with (~k[ from the left and using the Hermiticity 
property of /qo,  we immediately obtain 

G - E g  O) - <4)kl/4int(0)lq'k)^ ^ (~l'I '~) (3.51) 

for the difference of the energy eigenvalues in the interacting and noninter- 
acting systems, respectively. Moreover, introducing the eigenvectors (3.49), 
we easily arrive at 

^ A ^ 
(~kl~n,(0) U~(O, -co)l~k) 

Ek - E go) = lim (3.52) 
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Similarly, we can expand the eigenvectors of the interacting system in terms 
of the eigenstates of the noninteracting system, i.e., 

^ ( ~ l ] U e ( O ,  - (30 "" 
["Irk) = lim 

)l~k) 
z-o+ ,=o (~k[ U'(0,--oO)[~k) I~z) (3.53) 

which also follows from equation (3.49). Finally, using Dyson's expansion 
(3.45), we can readily write down the energy shifts due to the interaction as 

Ek-E~~ ( - i ) "=o n! J-oof~ dtl '"f;~odt. 
A a A e ^ • "'" Hint(tn))ldPk) . . . . . .  ted (3.54) 

A 
where, for convenience, Hint(0 ) has been placed inside the time-ordered 
T-product. The Wick decomposition of equation (3.54) will eventually lead 
to an expansion in terms of Feynman diagrams in coordinate space. If  we 
restrict this sum to the so-called connected diagrams, the denominator that 
was present in equation (3.52) must be omitted, based on Goldstone's 
theorem. 

3.3. Physical  States 

It is well known that covariant canonical quantization of gauge fields 
inevitably leads to a Fock space V with indefinite metric. This is most easily 
seen by realizing that, in a symbolic notation, the commutator 

[A ", II ~ ] = ig ~ (3.55) 

results in 

[c ~, c v+] = - g ~  (3.56) 

for the creation and annihilation operators. The presence of negative norm 
states, such as 

]1) = c~ ( l id  = -(0[0) (3.57) 

in the Fock space is intimately related to the indefiniteness of the Minkowski 
metric of space-time g"~, and endangers the probabilistic interpretation of 
the quantum theory (negative probabilities!). Thus, we can conclude that 
the whole indefinite metric Fock space V defined by the field operators of 
the theory is too large to describe the physical world. Further, the uncon- 
strained presence of ghosts in the physical space would violate the usual 
spin-statistics connection, since the ghosts are spin-zero fermions. One of 
the main problems in covariant quantization is to define consistently a 
physical Hilbert space that does not contain the unphysical negative norm 
states. 
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In the Abelian quantum electrodynamics, the Gupta (1950)-Bleuler 
(1950) condition 

0~ag(+)lxl2'plays) = 0 (3.58) 

is sufficient to guarantee a positive-definite subspace {[XI'tphys) }. Furthermore, 
since in this theory the four-divergence of the photon field O,A ~ satisfies, 
even in the Heisenberg picture, the noninteracting d'Alembert equation, 
equation (3.58) can be shown to be consistent with time evolution. This 
method is not applicable to a non-Abelian gauge theory, e.g., quantum 
chromodynamics. In the Heisenberg picture, O~A~ is not a free field. In the 
interaction picture, where a~A~ obeys the free d'Alembert equation by 
virtue of (3.34), the state vectors are time-dependent. Thus, an equation of 
the form (3.58) cannot be maintained for all times. 

Kugo and Ojima (1979) developed a consistent formalism that general- 
izes the Gupta-Bleuler condition (3.58) to non-Abelian gauge theories, 
which we would like to adopt here. Using the time-independent BRS charge 
QB in (2.45) or (3.18), (3.19), we find that the physical subspace Vp consists 
of all state vectors satisfying the relation 

QBl~I?phys) ~ 0 (3.59) 

Based mainly on the algebra 

Q2 = 0, [ Qc, QB] = iQB (3.60) 

Vp can be shown to be positive semidefinite. 
Of course, any state vector [~') that can be expressed as 

I ~ ' )  = QB[~) (3.61) 

with an arbitrary I~) trivially satisfies the physicality condition (3.59) due 
to the nilpotency of the BRS charge. However, it has zero norm and is 
orthogonal to Vp. Thus, it cannot contribute to any measurable quantity. 
Moreover, the state [X/~lphys) that is obtained from the physical s ta te  [XIYphys) 
of (3.59) by applying the operator F on it, i.e., 

]XI't'phys) = F]XlYphys) (3.62) 

where the operator F either commutes or anticommutes with the BRS charge 

[QB, F]  = 0 or {Q~, F} = 0 (3.63) 

is again a physical state. An operator satisfying one of equations (3.63) is 
called an observable. 

It is interesting to note that the field equation (2.31) for the gluons can 
also be expressed in the form (Kugo and Ojima, 1979) 

o~,F"~+gJ~+{QB, ~ x }  =0  (3.64) 
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where J~ is the color-carrying current (2.43). We deduce from this rep- 
resentation (3.64) that the gluon fields A" obey, in the physical subspace 
Vp of (3.59), the generalized Maxwell equations 

(gr physl0,F +gJclXtrphys)=0 (3.65) 

Let us now discuss the condition (3.59) in the Dirac picture, especially 
with regard to the perturbative expansion (3.45)-(3.54). Using the relations 

iO (~o=0 
Ot 

A ..~ A 

[Q0, Hint(t)] = - i  --~0 Qint(t) (3.66) 
ot 

[Oim(t), Hint(t)] --- 0 

that follow from (3.21), it can be shown that the BRS charge inherits the 
adiabatic damping factor e -~!~l from the Hamiltonian 

t ~ ( t )  = (~o+ e-~L~10int(t) (3.67) 

Since the noninteracting or asymptotic states [~), equation (3.48), corre- 
spond to the limit t-> -oo, equation (3.59) translates into 

Oo[~Dphys) = 0 (3.68) 

Moreover, the algebra (3.60) guarantees that the state v e c t o r  [~tphys) which 
develops adiabatically from ]C~phys) in (3.68) according to (3.49) cannot 
destroy the positive semidefiniteness of Vp. 

Evaluating equation (3.18) in the Dirac picture, we obtain with the 
help of the field equation (3.34) and the definition of the conjugate momen- 
tum I~I" in (3.38) 

= h f dSx (0~162 �9 O~,~-r �9 O~ ~) (3.69) 0o 

This form of the asymptotic BRS charge reflects a close relation of the 
definition of the asymptotic physical subspace Vp of (3.68) with the Gupta- 
Bleuler condition (3.58). 

4. CAVITY QUANTUM CHROMODYNAMICS 

4.1. Boundary Conditions 

In this section we want to find a consistent phenomenological descrip- 
tion of the empirical fact that the color-carrying constituents of physical 
particles are confined in a finite region of space. This confinement is believed 
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to be due to nonperturbative effects, which cannot be generated using the 
expansions in Section 3.2, equations (3.45)-(3.54). We therefore turn to a 
slightly different version of  quantum chromodynamics in which the field 
operators are restricted to a domain in space V, which we call the cavity, 
its boundary being the closed surface O V. 

Of course we want to make sure that this modified quantum chromody- 
namics resembles as closely as possible the original theory. In the cavity, 
the field operators will satisfy the field equations (2.30)-(2.33) in the 
Heisenberg picture, or (3.33)-(3.35) in the interaction picture. We will 
further demand that the conserved charges introduced in Section 2.4 remain 
conserved in the cavity. In order to discuss the consequences of  the latter 
requirement (Chodos et al., 1974a), let us describe the cavity V by its 
characteristic step function |  

for 
(4.1) 

for x~  V 

which is related to the surface delta function 8(x) by 

O~,O(x) = n ,8 (x )  (4.2) 

Here, n~, = (no, - n )  denotes a spacelike unit vector 

n~,n ~ = -1  (4.3) 

with n perpendicular to the surface O V and pointing outward. 
A conserved charge Q is given by the space integral over the zero 

component of a conserved current 

Q =  f v  d3xJ~ d 3 x O J  ~ (4.4) 

Using equation (4.2) and the conservation of the current O~,J ~ = 0, we easily 
find the time derivative to be 

~ Ot Q = dO n , J"  (4.5) 
v 

where dO is the two-dimensional surface element. Hence, if the conserved 
current J "  satisfies the boundary condition 

n~,J ~" (x)  = O, x ~ 0 V (4.6) 

the charge (4.4) will be time independent in the cavity. 
Inspecting the currents given in Section 2.4, it is readily verified that 

equation (4.6) holds if we impose the following set of boundary conditions 
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on the field operators in the Heisenberg picture: 

( in.T ~ - 1)OIov = tp( in~7 ~ + 1)[ov = 0 (4.7) 

n~F~lov = n ~ A ~ l o v  = n.O"(O~A~)lov = 0 (4.8) 

n , o ~ l ~ v  = n y ' x [ o v  = 0 (4.9)  

Equations (4.7)-(4.9) are essentially those introduced by the MIT group 
(Chodos et al., 1974a; Hansson and Jaffe, 1983; Goldhaber et al., 1983, 
1986). Of course, one could think of more complicated boundary conditions 
than the above. However, the set (4.7)-(4.9) has the advantage of being 
linear in the field operators and independent of the strong coupling 
constant g. 

The first of equations (4.8) implies that the space integral of 0 ,F  "~ 
over the cavity volume vanishes. Combining this result with the field 
equation for gluons in the form (3.64), we can express the color generator 
Q c  as 

g Q c : g  fvd3XJ~ f vd3x[o ,F"~176  fvd3x@~ } 

(4.10) 
This representation leads immediately to the conclusion that 

(WbhyslQcl'G,ys) -- 0 (4.11) 

i.e., the color charge vanishes in the subspace of physical states in the cavity. 
Localizing the field operators in a cavity, we are violating translational 

invariance of the theory. Consequently, the 3-momentum will not be conser- 
ved. If we restrict ourselves to a static cavity (n o= 0), the Hamiltonian will 
be time-independent and the energy will be conserved. In this static case 
with a t ime-independent surface 0V, the boundary conditions (4.7)-(4.9), 
which are formulated in the Heisenberg picture, translate easily into the 
Dirac picture as follows: 

(inky k - 1)t~lov = ~(inkyk+ 1)lov =0  (4.12) 

nk(Ok3, ~ -O~3,k)lov = n~3,~lov = n~O~(Of~)l~v = 0 (4.13) 

nkok ~]ov = nkOk •lov = 0 (4.14) 

4.2. Expansions in Cavity Modes 

The field operators can be expanded in terms of a complete set of field 
functions or cavity modes that satisfy the same field equations and boundary 
conditions as the field operators in the Dirac picture. (For simplicity, we 
use here the so-called Feynman gauge with A = 1.) The operator character 
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of  the field operators is now carried by the expansion coefficients. In the 
static case the time dependence of the quark, gluon, and ghost field functions 
can be factored out, yielding time-independent field equations and boundary 
conditions for the quark, gluon, and ghost field functions. In the simplest 
case of  a spherically symmetric and static cavity, we arrive at the cavity 
modes that are discussed in Appendix A. 

We now expand the quark field operator in terms of  the cavity modes, 
splitting this operator into positive and negative frequency parts, 

= 

= ~ e " +bc ,  u_,(x) (4.15) E [ac, u,(x) -i~, ^+ ei~t]. 
K #  

v > 0  

Here we have made use of  the symmetry relation 

e_. = - e ,  (4.16) 

where n and - n denote sets of quantum numbers defined by 

n = {f, ~,, K, (/x)}, - n = {f, -1,, --K, (--/x)} (4.17) 

The sum in equation (4.15) extends over all Dirac and magnetic quantum 
numbers K and tz, respectively, and the positive radial quantum numbers 
~,. Similarly, we have for the Hermitian adjoint quark field operators 

E Et~+,tT,(x) '~' " - e-"~ = e n +bc,  u_,(x) (4.18) 

v > 0  

A +  ^ A +  A 

The operators ac, (a~,) and b~,, (bcn) a r e  defined for 1, > 0 and describe the 
creation (annihilation) of  quarks and antiquarks, respectively. Indeed, using 
the anticommutation relations (3.1) and the orthonormality condition (A16), 
we immediately arrive at the anticommutation relations for the quarks and 
antiquarks: 

a c n  , " +  b~,,,} = ~c~,~,, (4.19) 

Similarly, the gluon field operators can be expanded in terms of  the cavity 
modes defined in Appendix A, yielding 

,~ A + ^ 

A~(x )  = A~ ~ ~(x) + A~(-~(x) 
E - - 1 / 2  A'E IXE �9 .E = +c~mam (x) exp(i l )~t]  (20 , . )  [c~,,a,. (x) exp(-zOmt)  ^~+ ~'~ * 

E J M  
N > 0  

(4.20) 

Here, E = 0, ~,  d/t, ~ denote the scalar, longitudinal, transverse magnetic, 
and transverse electric polarizations of the gluon cavity modes, respectively. 
The symbol m stands for a set of quantum numbers given by 

m = {N, J, (M)} (4.21) 
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where J and M are the angular momentum quantum numbers and N 
,qE+ ^Y., denotes the radial quantum number. The operators c~,~ and Gr, can be 

interpreted as creation and annihilation operators for a gluon with polariz- 
ation ~. Indeed, based on equations (3.2), (A34), and (A35), we arrive at 
the commutation relations 

Ca're'] = --gZ~'6~o'Smm' [Gin, (4.22) 

where the metric g~Z' is given by equation (A37). 
Finally, the ghost field operators can be expanded in terms of cavity 

modes as well, yielding 

G ( x )  = o3~.+~(x) + o~-~(x) 
A A_b" 

= 52 ( 2 f ~ ~ 1 7 6  exp( - i f~~  +dama~ * exp(if~~ 
J M  

N > 0  

(4.23) 

and 

;o(x) = G+~(x) +G-~(x) 

(2l~m) [e , .~am(X)  exp(-if/~ A+ o , 0 - - 1 / 2  ~' 0 = + eamam(X)  exp(il~~ 
J M  

N > 0  

(4.24) 

Using equations (3.3), (3.4), and (A35), we can easily show that the only 
nonvanishing anticommutators are 

-{dam, ~a'm'} = (4.25) e a,,,,} = i6aa'6,,,,,, 

The zero-particle state or the asymptotic vacuum 10) is the state with 
norm one that is annihilated by all the quark, antiquark, gluon, and ghost 
annihilation operators 

dc, I 6) = b~nl 6) = 0 
^ "*" ^ A "~ GIo) - -  do,.Io) = e o , , , I o )  = 0 (4.26) 

(616) = 1 

The Fock space of asymptotic states, which is, by assumption, complete 
and thus contains all the states of the interacting theory, is obtained in the 
standard way by applying any combination of creation operators on the 
zero-particle state (4.26). 

Based on the expansions (4.20), (4.23), and (4.24) and the orthogonality 
of the cavity modes (A35), the g-independent part Qo of the BRS charge, 
equation (3.69), is readily found to be 

= - l)m[(C~m -- Ca~) d~m + (4.27) 
a m  
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Thus, sufficient conditions that an asymptotic state satisfies the physical- 
ity criterion (3.68) can be stated as 

^ . L ~  A O  ^ ^ ^ (Cam -- C~m)J~Pphys) = 0; da,,l~Pphy) = 0 (4.28) 

Here, we see the close relation of equation (3.68) with the Gupta-Bleuler 
condition (3.58). Of course, the asymptotic vacuum 10) is a physical state 
due to equation (4.26). 

Similarly, we can write down the normal-ordered, noninteracting part 
of the Hamiltonian (2.38) in the Dirac picture as 

:/-to:=Ee,,(a+,,a~,,+g+,,/~,,) + E l'l~c~+8~m+{(~o,/~) (4.29) 
c n  a m  

where the fermionic ope ra to r / (  is given by 

i 
= -  - ( c a , , , + c ~ , ~ )  e~m] (4.30) [ e , , ~ ( ca , .  + c~m) " ~  ,,o + 

a m  

The last term in equation (4.28), which represents the contribution to /qo 
from the unphysical longitudinal and scalar gluon fields and the ghost fields, 
has been cast into a form that shows explicitly that its matrix elements, 
taken between the physical states (3.68), vanish. 

5. TWO-PARTICLE INTERACTIONS 

5.1.  Introduct ion 

We now turn to the discussion of the various types of interactions that 
arise between quarks, antiquarks and gluons in second-order perturbation 
theory. Truncating the perturbation expansion (3.54) after the first two 
terms, we obtain the energy shifts of second order in the strong coupling 
constant g 

- E g  O> = 

f 0 ^ A .., 

- i  lira d t ( ~ k l T ( H i n t ( O ) H i ~ n t ( t ) ) l ~ k )  . . . . . .  ted (5.1) 
e ~ 0 +  J - o o  

Here [~k) denotes an eigenvector of the noninteracting Hamiltonian :/-Io:, 
equation (4.29), with the eigenvalue E~ ~ Instead of Ho, we make use of 
the normal-ordered operator :/qo:, which differs from Ho by the (infinite) 
vacuum expectation value of Ho and thus does not contribute to the energy 

A e 
shift. Hint(t ) is the interaction Hamiltonian, equation (2.39), with the 
adiabatic damping factor attached. Due to the presence of the four-gluon 
vertex, the normal-ordered interaction Hamiltonian :Hint(t): differs from 
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A 

/-/~nt(t) by a nontrivial operator involving the product of the gluon fields 
A k" A 1. In contrast to quantum chromodynamics in free space, this operator 
is not diagonal in the space indices k and l, due to the violation of translation 
and Lorentz invariance in the cavity. Thus, this term cannot be absorbed 
into a mass renormalization of the gluons and must be kept in the interaction 

~ e  Harniltonian. It is, of course, possible to subtract from Hint(t) its (infinite) 
vacuum expectation value. Hereby the phase of the time-evolution operator 
U~(t, to) is changed, but the form of the states (3.49) is not affected by this 
subtraction procedure. 

In this paper we restrict ourselves to the study of nondivergent tree 
diagrams, shown in Figure 2, in order to avoid the problems related to the 
renormalization of Feynman diagrams in the cavity. A first promising step 
in solving these renormalization problems in "bagged" quantum chromody- 
namics has recently been made with the development of the multiple 
reflection formalism (Hansson and Jaffe, 1983; Goldhaber et al., 1983, 1986). 

(a) (b) 

(e) ( f )  (g) 

(h) ( i )  ( j )  

x 
(k) (I) (m) 

Fig. 2. The Feynman diagrams representing the second-order interactions discussed in this 
work: (a) the quark-quark and (b) antiquark-antiquark interactions through gluon exchange; 
the quark-antiquark interactions through (c) gluon exchange and (d) annihilation; the quark- 
or antiquark-gluon interactions through (e, h) the direct and (f,i) the exchange Compton 
diagrams and (g,j) the gluon exchange; the gluon-gluon interaction through (k) the gluon 
exchange, (1) the annihilation, and (m) the elementary four-gluon vertex. 
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The state vector I~k) in equation (5.1) consists, in general, of quarks, 
antiquarks, gluons, and ghosts. Here, we assume that [qbk) is a physical state 
with ghost number zero and positive norm 

A ^ A ^ ^ ^ 
QoN' ) = o; QoI , ) = o; = 1 (5.2) 

Note that the Gell-Mann and Low theorem must be slightly modified for 
states with nonvanishing ghost number, since the norm of such a state is 
zero, and the denominator in equations (3.49) and (3.15)-(3.53) vanishes. 
In order to satisfy all requirements of equation (5.2), we take the asymptotic 
state I~k) to contain only quarks, antiquarks, and the two physical degrees 
of freedom of the gluon: the transverse electric and magnetic polarization 
modes. 

In general, E~ ~ is degenerate and therefore several orthogonal eigenvec- 
tors l~k), I~k,), �9 �9 �9 belong to this eigenvalue. A linear combination of these 
vectors is again an eigenvector of :/4o: with the same eigenvalue and can 
be used in the Gell-Mann and Low formula (3.49). We are thus led to 
consider the off-diagonal matrix elements of the right-hand side of (5.1) as 
well, 

- i  lim f o  dt (~k,[T(IY-Ii.t(O)I21i~t(t))l~g) . . . . . .  ted (5.3) 
e ~ 0 +  

The energy shifts and the corresponding eigenstates are then obtained by 
diagonalizing the matrix Vk,k. 

5.2. Quark-Quark Interaction 

As an example, let us now, for a two-quark system, calculate the energy 
shift due to the one-gluon-exchange interaction. The eigenstates of :Ho: are 
given by 

I 'k) A §  A §  A 
= a .... ac2,:10) (5.4) 

The part of Him(t) that describes the two-quark, one-gluon vertex can be 
obtained from the first term in the Hamilton density (2.39) integrating over 
the volume 

f 3 ~ ., A t t i , ~ ( t )=-g  d x~(x)y~,(XJ2)~,(x)A~a(X)+other terms (5.5) 

Inserting this operator into equation (5.3) and using Wick's theorem to 
expand the time-ordered into normal-ordered products, we arrive at the 
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matrix element 

Vk'k = --ig 2( yg.)c~'a( ~/~,)~'~( ha/2)c'c( hb/ 2)d'd~f'f6g' g 

x lim f]~dte-~ltl  l d3x f 
^ -~ A A A + . (+) (+) (+) ( ) 

X ( ~ k ' l "  ~ O c ' f ' , ~ ' ( X ) O c f , ~ ( X ) q l d ' g ' ~ ' ( Y ) t ~ d g ~ ( Y ) : ] ~ k )  (5.6) 

Here we have picked out the term where the gluon fields are contracted 
and introduced the coordinates x = (x, 0) and y = (y, t). As usual, a summa- 
tion over all repeated indices is understood. Expanding the quark field 
operators into cavity modes, as given in equations (4.15) and (4.18), and 
using the explicit form of the gluon propagator (B7), we arrive at the matrix 
element 

2//A,,'~ [ A,,'~ go  :~ 1 
Vkk = - g  t,5 )o c ,5 a :  + 

x I d3xu"'(x)y"u"(x)a:X(x)f  e3yuo'(Y)%up(y)a:~(Y)* 

^ A+ A-t- ~ A ^ 
X ( t ~ k , l a c , n , a d , p , a c n a d p l ~ k )  (5.7) 

where the energy denominator arises from the time integration. Thus, Vk'k 
can be interpreted as the matrix element of the two-body operator 

Q.'.,.Qp'v,. ^+ ^+ ^ ^ (5.8) V :  g k - f  J ,~ k-~,] a,a6y,j3g,g 21)~ ~-g--7, - - -  ac'.'a~'t,'a~.aap 
~'~ m + e p ,  - -  e p  

which describes the one-gluon-exchange interaction between two quarks. 
Here we have made use of the definition of the quark-gluon vertex functions 
(C1) and (Cla). 

In order to describe a complex many-quark system, it is convenient to 
have the two-body operator (5.8) expressed in first instead of second 
quantization. The Fock space can be embedded in the space given by the 
direct-product wave functions of the quarks. The Pauli principle is taken 
care of by restricting the Hilbert space to the subspace defined by the 
antisymmetrized product wave functions of the quarks. The two-body 
operator V~2 corresponding to I) and acting on the quantum numbers of 
the first and second quark can be written as 

g2 
V12 = FI" F2 Y. tx,2(J)K,2(J) (5.9) 

4erR j 

Here J describes the angular momentum exchanged between the quarks 
and G( i  = 1, 2) denotes the color generator in the fundamental representa- 
tion. The operators /x~2(J) and K12(J ) are defined as two-body operators 
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that act on the radial and angular part of the two-body wave function, 
respectively. These are readily defined in terms of their matrix elements. 
Using equations (C6) and (C7) to decompose the vertex functions Qnn'm 
in equation (5.8) into radial and angular parts, we arrive at 

(n~, n~lK,2(J)lnl, n2) = (2J+  1) Y~ (--1)MF~M(n~, nl)Fj-M(n~,  n2) (5.10) 
M 

Here ]n~, n2) denotes the direct product of the Dirac spinors (A2), and the 
factor Fj~(n ' ,  n) arises from the angular integration (C8) 

F ~ u ( n ' , n ) = (  1)"+'/2j'3~ 0 -- �89 M I.L 

Similarly, we can define 

(n~, n;I/z12( J)[n~ , n2)= ~ o  2(-2-~ i) S ~ , m S ~ , ~  

where the matrix element ~ S~,m is related to the radial integrals R~,,~ 
(Viollier et al., 1971, 1983) defined in equations (C9)-(C12), 

~ 1 - g ~ q ~ ( - 1 )  l+J+r 
s . . ,~  (5.13) R nn,rn 

2 

The second factor in equation (5.13) governs the parity selection rule, and 
gZ~ and ~z are defined in (A37) and (A43), respectively. 

Let us now consider the case where the quarks in the initial and final 
states carry total angular momentum j =�89 which means that the Dirac 
quantum number K takes the values +1 or -1.  Using the Wigner-Eckart 
theorem, one can easily show that the only nonvanishing K12(J) are 

K12(0 ) = "D1~ 2 and K12(1 ) = 4S~" 82 (5.14) 

where ~i and Si denote the unit and the spin operator, respectively, acting 
on the ith quark. Thus, for quarks in the angular momentum state j = �89 we 
arrive at the well-known expression (DeGrand et al., 1975; Johnson, 1975; 
Viollier et al., 1983) 

2 

V12 =4~-R F~. F2[/x12(0)+ 4/za2(1)Sl" S2] (5.15) 

which is very convenient for the calculation of the properties of many-quark 
systems. 
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In a similar way we can determine the two-body operators describing 
the interactions corresponding to all other nondivergent Feynman graphs 
of order g2 that do not involve the ghosts. The resulting two-body operators 
in first or second quantization are presented in Appendix D. 

5.3. Energy Shifts for Low-Lying Cavity Modes 

We now discuss the various two-body interactions between the quarks, 
antiquarks, and gluons. For simplicity, we consider here massless up and 
down quarks and antiquarks and gluons occupying the lowest cavity modes. 
The corresponding quantum numbers are (p, q)J~I = (1, 0)�89189 for the quarks 
and (p, q)J~l=(1,  1)1+0 for the gluons. Here, the two integers (p, q) 
characterize the irreducible representation of SU(3)color, the dimensionality 
of the representation and the eigenvalue of the quadratic Casimir operator 
being given by 

SU(3): N ( p , q ) = � 8 9  
(5.16) C(p, q) = �89 +pq + q2) +p + q 

Similarly, the irreducible representations of SU(2)spin and SU(2)isospin are 
described by the spin J and the isospin I, respectively, and the dimensionality 
and eigenvalue of the Casimir operator are given in this representation by 

SU(2): N ( J ) =  2J + I 
(5.17) 

c ( J ) :  J ( J+  1) 

Finally, the quantity ~r stands for the parity of the state. 
The two particles will in general be embedded into a larger many-body 

system. This system must be in a singlet representation of the color group 
SU(3)co~or, since, according to equation (4.11), physical states must be 
colorless. This restriction does not apply to a subset of the constituents of 
the many-body system and therefore two particles of a larger system can 
be coupled to any of the allowed quantum numbers. Of course, identical 
particles must obey the Fermi-Dirac statistics for fermions and the Bose- 
Einstein statistics for bosons. 

In Table I we have collected or all diagrams of Figure 2 the correspond- 
ing dimensionless interaction operators A12, which are defined by 

4~rR 
A12-- g2 V12 (5.18) 

Tables II-IV contain the matrix elements of the two-body operators /zl2 
and P12- 
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Table  I. 

Buser, Violl ier,  and Zimak 

The Dimensionless Two-Body Interaction Operators Al2 for the Various Diagrams 
of Figure 2 a. 

Diagram AI2 = (4rrR/g2) V12 

X 

F12[bl,12(0) + 4/-t 12(1)$12] 

1 4 1 (~ - TI2)(F12 + ~ ) [ ~ 1 2 ( 0 ) ( ~ -  $12 ) +/.t12 ( 1 ) ( 3 +  $12)] 

~8(4F22 - 1)[/~12(1)( 1 -  S,2)+ bt 12(2)(1 + $12)] 

~(4F22 + 6F12 - 1)[1x12(1)(�89 S,2) +/x12(2)(1 - S,2)] 

F12[/z12(0) +/z12(1) S12] 

F12[p12(0) + p12(1)$12 + p12(2)S22] 

aWe use the abbreviations F12 = F~ �9 F2, SI2 ~- S 1 ~ 82 ,  and Tl2 = T1 �9 T2 for the product of color, 
spin, and isospin generators, respectively. The matrix elements of the operators/z12(J) and 
p12(k) are given in Tables II-IV. 

Table I1. Matrix Elements of the Operators/z12(J ) for the Interactions via Gluon Exchange 
between Two Quarks, Two Antiquarks, or a Quark-Antiquark Pair and via Annihilation into 

a Gluon for the Quark-Antiquark System. a 

Diagram ( r l ,  K2) j[~ 12(0) ]/,12(1) 

k( 
( - ,  - )  0.0098 (0) -0.1770 (-0.1770) 
( - ,  +)+ 0.0353 (0) -0.1432 (-0.2082) 
( - ,  +)_ 0.0352 (0) -0.0796 (-0.0146) 
(+, +) 0.1321 (0) -0.1173 (-0.1173) 

( - ,  - )  0 (0) 0.1875 (-0.0124) 
( - ,  +)+ 0 (0) 0.0494 (0.0494) 
( - ,  +)_ 0.1806 (0) 0 (0) 
(+, +) 0 (0) 0.1055 (0.0135) 

aThe values are given for massless quarks in the lowest energy cavity mode. The numbers in 
parentheses are the contributions from the transverse polarizations of the virtual gluon. The 
mixed states correspond to ( - ,  + )§  ( l /x/2)[(- ,  + ) •  and K~, K2=•  denote the 
Dirac quantum numbers of the modes. 
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Table III. Matrix Elements of the Operators ~12(J) for the Various Diagrams of the Quark 
(Antiquark)-Gluon Interaction ~. 

Diagram (K, E) p.12(1) t~12(2) 

f ( - '  M) 0.5616 0.0632 
(-, ,~) 0.4240 0.0346 
(+, g/) 0.3175 0.0411 
(+, ~) 0.4915 0.0286 

~ _ ~  ( ( - , M )  -0.3298 0.2101 
(-, ~g) -0.0116 0.0913 

~ . ~  (+, M) 0.1130 0.0673 
(+, ~') -0.3076 0.0617 

,Uq2(O) k~12(1) 

[" (-, ,/t/) -0.0053 (0) -0.4900 (-0.4900) 
(-, ~) 0.0336 (0) -0.4009 (-0.4009) 

~ .~ (+, X/) -0.0214 (0) -0.3204 (-0.3204) 
(+, ~') 0.t347 (0) -0.3900 (-0.3900) 

aThe numbers in parentheses represent the contributions to the gluon exchange from the 
transverse polarizations of the virtual gluon. 

Table IV. Matrix Elements of the p~2(k) Operators for the Gluon-Exchange, the Annihilation, 
and the Four-Gluon Vertex Interactions in a Two-Gluon System a. 

Diagram (~1, 3~2) PI2(0) P12( 1 ) P12( 2 ) 

(./,/,./~) -0.1045 (0) -0.2992 (-0.3399) 0.0813 (0) 
(M, ~)+ -0.0220 (0.0069) -0.2968 (-0.4440) -0.0020 (-0.0052) 
(M, ~)_ -0.0358 (-0.0069) -0.2720 (-0.1280) 0.0084 (0.0052) 
(~, ~) 0.1382 (0) -0.3205 (-0.3277) 0.0143 (0) 

t (d/t, A/t) -0.1963 (0) 0.0981 (0) 0.0981 (0) 
(M, ~)+ -0.3241 (-0.0340) 0.1621 (0.0170) 0.1621 (0.0170) 
(~,  ~)_ -0.0011 (0) -0.0017 (0) -0.0005 (0) 
(~, ~) -0.2073 (0) 0.1036 (0) 0.1036 (0) 

t 
(J/, A/) -0.1549 0.1549 0.0774 
(A/t, ~)+ -0.0555 0.0748 0.0513 
(~, ~)_ 0.0469 -0.0278 -0.0941 
(~, ~) -0.1616 0.1616 0.0807 

aThe numbers m parentheses (where given) show the contributions from the transverse 
polarizations of the virtual gluon. Note that (~(, ~)• = (1/.,/2)[(At, ~)+ (~', M)]. 
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5.3.1. The Diquark System 

Since the antiquark-antiquark interaction is, with trivial changes of 
the quantum numbers, identical to the quark-quark interaction, we will 
discuss here only the latter. The diquark can occupy the following irreducible 
representations of the various symmetry groups: 

SU(3)color: 

SU(2)spin:  

SU(2)isospin: 

(1, 0)|  0) = (0, 1)AO (2, 0)s 

1 1 
~ @ ~ = 0 A @ l s  

1 1 
~ Q ~ = 0 A @ l s  

(5.19) 

(p, q)J~I = (0, 1)0+0 (2, 0)0+1 

(0, 1)1+1 (2,0)1+0 (5.20) 

The two-body operator describing the interaction via one-gluon exchange 
between two quarks or antiquarks (Figs. 2a and 2b, respectively) is given by 

m12 = F 1 �9 F2[/s $2] (5.21) 

This operator is diagonal in the two-particle space and has the matrix 
elements 

A :  ((p, q)J~IlA,21(p, q)J~I) 

: �89 C(p, q) -8]{/z (0) + 2/x (1)[J(J  + 1) _3]} (5.22) 

where C(p, q) is the Casimir operator of SU(3)color, given in equation 
(5.16). The matrix elements of A12 are shown in Figure 3 and also in Table 
V. Note that the color {3} = (0, 1) interaction is twice as strong as the color 
{6} = (2, 0) interaction. Since the ordinary baryons are usually taken to be 
colorless three-quark states, only the color {3} interaction is accessible to 
experimental tests so far. 

We indicate with a subscript whether the representation is symmetric (S) 
or antisymmetric (A) with respect to the interchange of the two quarks. The 
two-quark states that are consistent with the Fermi-Dirac statistics have 
the quantum numbers 
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5.3.2. The Quark-Antiquark System 

The quark-antiquark system can have the following color quantum 
numbers 

SU(3)co,or: (1,0) |  1)=(0,0)(~(1,  1) (5.23) 

whereas the spin and isospin products correspond to the quark-quark case 
(5.19). Since the antiquark is distinguishable from the quark, the exclusion 
principle does not apply and the eight possible states are 

(p,q)J=I=(O,O)O-O (1,1)0-0 

(0,0)0-1 (I, 1)0-1 

(0,0)1-0 (1, 1)1-0 

(0,0)1-1 (1,1)1-1 (5.24) 

The diagrams contributing to the quark-antiquark interaction are the one- 
gluon exchange (Figure 2c) and the virtual annihilation into a gluon 

0.5 

0.4 

0.5 

0.2 

0.1 

0.0 

-0.1 

-0.2 

-0.5 

-0 .4  

-0.5 

{O,I)l+l 
(2,0)0+1 

( 2 , 0 )  I§ 

(0,1)0+0 

Quark-Quark Interaction 
Notation (p,q) d-~I 

Fig. 3. The dimensionless energy shifts A for an interacting quark-quark system. The quarks 
occupy the ls~/2 mode. See also Table V. 
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Table V. The Dimensionless Energy Shifts 
A for an Interacting Quark-Quark System s 

(p, q)J~I 

(0, 1)0+0 -0.3605 
(0, 1)1+1 0.1115 
(2, 0)0+1 0.1803 
(2, 0)1+1 -0.0557 

aThe quarks occupy the lsl/z mode. See also 
Figure 3. 

(Figure 2d). The corresponding two-body operator is 

A12 = Fa" F2[Pq2(0)+  4/x,2(1)S1" S2] 

+ v~2(1 ) [~ -T1"  T2][F1 �9 F2+4][S~ �9 S2+�88 (5.25) 

with the matrix elements 

A = ((p, q)J~ZlA,2l(p, q)J~I) 
= l[C(p, q) -8]{tz(0 ) +2/x(1)[J(J+ 1) 3 ] }  

+�88 q)J(J+ 1)[1-11(1+ 1)] (5.26) 

In order to avoid confusion, we use the symbol v(1) instead of ~(1) for 
the nonvanishing coefficient of the annihilation diagram, so that v(1)= 
0.1875. The matrix elements A are shown in Figure 4. Table VI contains the 
contributions to A from the gluon exchange and the annihilation diagrams. 
Note that the second term in equation (5.25) or equation (5.26), which 
represents the annihilation diagram, vanishes unless the quark-antiquark 
pair carries the quantum number of the gluon (p, q)J~I = (1, 1)1-0). For 
this case we find that the annihilation diagram is ten times bigger in 
magnitude than the one-gluon exchange diagram and of opposite sign. 
Without this annihilation diagram the two states (p, q ) f I  = (1, 1)1-0 (color 
octet oJ-meson) and (p, q)J'~I = (1, 1)1-1 (color octet p-meson) would be 
degenerate. The possibility of virtually decaying into a gluon makes the to s 
heavier than the p8. However, the pionlike state (p,q)J~I=(O,O)O-1 
remains degenerate with the etalike state (p, q)J~'I = (0, 0)0-0, in contradic- 
tion to experimental findings. Of course, we know that the r and r/-mesons 
are, in the real world, more complex objects than just quark-antiquark 
systems consisting of up and down quarks. 

5.3.3. The Quark-Gluon System 
As already in the quark-quark case, the antiquark-gluon interaction 

leads to the same matrix elements for corresponding quantum numbers as 
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- 0 . 5  

- 0 . 6  

- 0 . 7  

- 0 . 8  

- 0 . 9  

A 

(0,o)I"I 
(0,0)I-0 

(0 ,0)  O- t 
(0,0) 0-0 

(l,l)l 'O 

( I , I )0- I  
( I , I )0-0 

(I,I)I-I 

Qua rk- Antiquark 
Interaction 

Notation (p,q) d ~rl 

Fig. 4. The dimensionless energy shifts A for an interacting quark-antiquark system. The quark 
and the antiquark occupy the lst/2 modes. See also Table VI. 

Table VI. The Dimensionless Energy Shifts A for an Interacting Quark-Antiquark System ~ 

( p, q )JJ~I >--< ~ Total 

(0, 0)0-0 } 
(0, 0)0-1 -0.7211 0 -0.7211 

(0, 0)1-0 } 
(0, O) 1-1 0.2229 0 0.2229 

(1, 1)0-0 } 
(1, 1)0-1 0.0901 0 ,0.0901 

(1, 1)1-0 } 0.2813 0.2534 
( 1, 1 ) 1 - 1 -0.0279 0 -0.0279 

aWe have separated the contributions from the one-gluon-exchange and the annihilation 
diagrams for a quark and antiquark in the ls~/2 mode. See also Figure 4. 
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the quark-gluon interaction, so that we consider here only the latter. The 
quark-gluon system can couple to the following quantum numbers: 

SU(3)~o,o~: (1, 0)| 1 ) = ( 1 , 0 ) 0 ( 0 , 2 ) 0 ( 2 ,  1) 

S U ( 2 ) s p i n :  �89 1 = ~ 1  3 

SU(E)isospin:  1(~)0 = �89 

(5.27) 

Of course, we do not need to symmetrize or antisymmetrize the direct 
product states; the possible quantum numbers of the quark-gluon system are 

(1,0)~ ~ (0,~!+1 (2, 1~-~+-~ (p, q)J=I: 1+1 ~12  2 1 / 2  2 

3+1 (2, (5.28) (1, 0)~ ~ (0, --,2~3-+!2 ,,2'~3"-'2 

The interaction between these two particles receives contributions from the 
direct (D) and exchange (E) Compton diagrams and the one-gluon 
exchange, shown in Figures 2e-2g, respectively. The corresponding two- 
body operators can be read off Table I; the matrix elements of their sum are 

a = ((p, q ) f l l&2l (p ,  q)J~'I) 
= 1 ( 4 F 2 -  1){�89 1)] +�89 1) _3]} 

+ 1 ( 4 F 2 + 6 F -  1){�89 (1)[J(J + 1) -7] +�89 J ( J +  1)]} 

+ F{/z (0) +�89 + 1) - 9 ] }  (5.29) 

Here, F is related to the Casimir operator of SU(3)r by 

F = ((V, q)lF1 "F~I(p, q))= �89 q ) - ~ ]  (5.30) 

Table VII. The Dimensionless Energy Shifts A for an Interacting Quark-Gluon System ~ 

( p, q)J~I ~ ~-~ ~ Total 

(1, 1+1 0)~ ~ 0.3744 -0.0325 -0.7271 -0.3852 
0)~ ~ 0.0421 0.0125 0.3755 0.4301 (1, 3+1 

(0, ~+~ 2)~ ~ 0 -0.0975 -0.2424 -0.3399 
(0, 3+1 2)~ ~ 0 0.0375 0.1252 0.1627 
(2, 1)�89189 0 0.0975 0.2424 0.3399 
(2,1)2+�89 0 -0.0375 -0.1252 -0.1627 

aWe show the contributions from the various Feynman diagrams for a quark in the ls~/2 and 
a gluon in the ld//~ mode. See also Figure 5. 
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Quark-Gluon Interaction 

Notation (p,q)J"rl 

Fig. 5. The dimensionless energy shifts A for an interacting quark-gluon system. The quark 
occupies the lsl/2 and the gluon the lJXl mode. See also Table VII. 

In equation (5.29), the second, third, and fourth lines correspond to the 
direct and the exchange Compton diagrams and the gluon exchange, respec- 
tively. The shifts of the two-particle energy levels due to these three interac- 
tions can be found in Figure 5. As can be seen in Table VII, the energy 
shifts are dominated by the contribution from the gluon exchange between 
the quark and the gluon. 

5.3.4. The Gluon-Gluon System 

Two gluons can be accommodated in the following irreducible rep- 
resentations of  the groups SU(3)co~or and SU(2)spin: 

SU(3)co~or: (1, 1) |  1 ) = ( 0 , 0 ) s O ( I ,  1)sO(1, 1)AG(3,0)A 

(0, 3)A03 (2, 2)S 
(5.31) 

SU(2)spin: 1 | 1 = 0SG 1A(~ 2S 

We have again indicated the symmetry property of the representations with 
respect to the interchange of  the two particles. Since the gluons are bosons, 
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the Bose-Einstein statistics allows only the following nine totally symmetric 
two-particle states: 

(p, q)J=: (0,0)0 + (1,1)0 + (3,0)1 + (2,2)0 + 

(0,0)2 + (1,1)1 + (0,3)1 + (2,2)2 + 

(1, 1)2 + (5.32) 

The two-body operators that describe the gluon-gluon interactions through 
gluon exchange, annihilation, and the four-gluon vertex are given in all 
three cases by (Buser, 1983, Hess and Viollier, 1986, 1988) 

A~2 = FI �9 F2[P12(0) + p~2(1)$1 �9 S2+ PI2(2)(S~ �9 $2) 2] (5.33) 

and have the matrix elements 

A = ((p, q)J'~lA121(p, q)J~) 

= l [C(p,  q)-6]{p(O)+lp(1)[J(J+ 1)-4]+�88 1) -4 ]  2} (5.34) 

The coefficients p(k) can be read off in Table IV for the various diagrams. 
The resulting matrix elements h are shown in Figure 6; Table VIII indicates 
again the contribution to h from the individual diagrams. As compared to 
the previous cases in Sections 5.3.1-5.3.3, the two-particle energy shifts due 
to the interactions in second-order perturbation theory are much larger for 
the gluon-gluon system. In particular, the state carrying the quantum 
numbers of  the vacuum, (p, q)J~ = (0, 0)0 +, is so much lowered in energy 
that it could become degenerate with the vacuum. Of course, whether this 
degeneracy is present depends on the value of the strong "hyperfine" 
constant ~ and the (up to now not reliably calculated) gluon self-energies, 
among others. Due to the vanishing of F~ �9 F2 in the SU(3)co~or representa- 
tions (p, q ) =  (3, 0), (0, 3), the two gluons do not interact in the decuplet 
and antidecuplet cases. 

Our results are consistent with those of Carlson et al. (1983a) for their 
gluon exchange diagram denoted by 3g, corresponding to the diagram of 
Figure 2 in this work, if only the transverse polarization modes of the virtual 
gluon are taken into account. Using the transformation of the coefficients 
as given by Carlson et al. (1983a), we can further show agreement of our 
four-gluon vertex with theirs for the cases J = 0 and J = 2, but not for J = 1 
(J being the spin of the gluon pair) (note the different naming of the gluon 
polarization modes). As for the Coulomb interaction, which is the gluon 
exchange between two gluons mediated by the scalar and longitudinal 
polarizations, we disagree with them on the value of their coefficient 6, even 
as corrected in Carlson et al. (1983b). The ~ corresponds to - p ( 0 ) - p ( 2 )  
in this paper. 
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Fig. 6. The dimensionless energy shifts A for an interacting gluon-gluon system. The gluons 
occupy the 1Jg I mode. See also Table VIII. 

6. CONCLUSIONS AND OUTLOOK 

In this paper we have studied a version of quantum chromodynamics 
in which the quarks, gluons, and ghosts are forced to move in a static and 
spherically symmetric cavity. The confinement of these particles was 
achieved by imposing on the field operators the linear boundary conditions 
of the MIT bag model. All nondiverging Feynman diagrams obtained in 
perturbation expansion of  this quantum field theory have been calculated 
in the Feynman gauge up to order a~. In most of the cases where we can 
compare our results to previous calculations performed in other gauges we 
found agreement. 

Of course, many open questions remain to be addressed before one 
can actually claim that quantum chromodynamics in a static and spherically 
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Table VIII. The Dimensionless Energy Shifts A for an Interacting Gluon-Gluon System a 

(p, q)J= ~_~ ~ ~ Total 

(0, 0)0 + -2.4575 0 0.4646 - 1.9929 
(0, 0)2 + 0:9672 0 -0.2323 0.7349 
(1, 1)0 + -1.2289 0 0.2323 -0.9966 

(1, 1)1 + -0.4140 0.2944 0.3485 0.2288 
(1, 1)2 + 0.4836 0 -0.1161 0.3675 
(3, 0)1 § } 
(0,3)1 + 0 0 0 0 

(2, 2)0 + 0.8191 0 -0.1549 0.6642 
(2, 2)2 + -0.3224 0 0.0774 -0.2450 

aWe show the contributions from the various Feynman diagrams for gluons in the l~t~ mode. 
See also Figure 6. 

symmetric cavity is a consistent quantum field theory. First, the self-energies 
of  the quarks and gluons, which appear  already to order a~, must be 
calculated in a reliable way. A promising step in solving these renormaliz- 
ation problems in the cavity has been made with the development of  the 
multiple reflection formalism, which has been applied recently to the calcula- 
tion of the quark self-energies (Hansson and Jaffe, 1983; Goldhaber  et al., 
1983, 1986). The self-energies of  the gluon, however, still remain to be 
evaluated, in order to make sure that the breaking of  translational and 
Lorentz invariance through the boundary conditions will not spoil the 
renormalizability o f  the quantum field theory at least to order ces. 

The formalism presented here in the Feynman gauge with the Faddeev-  
Popov ghost fields is best suited for the renormalization of Feynman graphs. 
Due to the locality of  the quantum field theory in this covariant gauge, the 
short-distance singularities are softer than in other gauges, e.g., the Coulomb 
gauge. In this context, it is also interesting to note that the short-distance 
singularities are not affected by the boundary  conditions and, more impor- 
tant we do not have to worry about infrared divergences in "bagged"  
quantum chromodynamics.  For the proof  of  renormalizability, it is also 
encouraging to know that the boundary conditions preserve the Becchi- 
Rouet-Stora  symmetry of the theory. 

Besides studying the renormalizability of  the theory, it is important  to 
assess the validity of  the perturbation expansion of this "bagged"  quantum 
field theory by actually calculating diagrams of  higher order in as (Stoddart 
and Viollier, 1988). One might think that with coupling strengths as of  
order unity it is hopeless to try a perturbation expansion. This need not be 
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the case in "bagged" QCD, which differs in many respects from QCD in 
"infinite space." First, the quarks, gluons, and ghosts must occupy cavity 
modes of a certain energy. Thus, it is not possible that a quark can radiate 
off a gluon with arbitrary small energy in "bagged" QCD. Second, all 
expressions we have deduced so far look like old-fashioned perturbation 
theory. Thus, it is not only the strong fine structure constant as that 
determines the convergence of the perturbation expansion, but rather a 
combination of  as, energy denominators, and vertex integrals that usually 
decrease very rapidly for the higher cavity modes. 

Quantum chromodynamics will have to predict some numbers in the 
low-energy region that can be verified with the precise low-energy experi- 
ments to at least three or four digits, such as the Lamb shift or the anomalous 
magnetic moment of the electron in quantum electrodynamics. It is perfectly 
possible that these questions can only be addressed once the confinement 
and the center-of-mass problem have been solved. It is also possible, 
however, that for certain precisely measured low-energy quantities, e.g., 
ratios or splittings, it does not matter in which way confinement was achieved 
and how the center-of-mass corrections are done. In this case, one could 
use the low-energy data as a precise test of quantum chromodynamics. 

Quantum chromodynamics also predicts the existence of  hadronic 
matter that is not composed of three quarks and a quark-antiquark pair 
primarily. In spite of the tremendous effort put into the clarification of this 
crucial issue, the experimental evidence for these exotic hadrons is still 
rather weak. We should be able, however, to understand the properties of 
these hadronic states if they exist. Conversely, if they do not exist, we will 
have to find out why, out of the tremendous number of possible color singlet 
states consisting of quarks, antiquarks, and gluons, only quark-antiquark 
and three-quark states are realized in nature. 

The ultimate and, from the theoretical point of view, most challenging 
and exciting problem in QCD is to discover how the original "infinite-space" 
theory manages to confine the color-carrying particles in a finite region of  
space. We will have to find out whether it is due to a breakdown of  the 
perturbative vacuum or to as yet undiscovered topological features of this 
non-Abelian gauge theory. In this context, it is perhaps important to realize 
that nuclei can and should be used as a laboratory to test our ideas about 
confinement. 

APPENDIX A. THE CAVITY MODES 

A1. Quarks  

Here we derive the cavity modes of the quarks in a spherically symmetric 
and static cavity. The explicit solutions of the time independent Dirac 
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equation 

(- i~/"  V + my)u.(r) = eny~ (A1) 

where e. is the energy and my the mass of the quark, are given by the Dirac 
spinors 

u.(r) = (g . ( r )x~(~)  ~ (A2) 
\/f,(r)x~-~(~)/ 

Of course, the adjoint spinor is defined as 

ti.(r) = u.+(r)y ~ (A3) 

Here X~(f) denote the usual two-component spherical spinors and n stands 
for the flavor, radial, and Dirac quantum numbers and sometimes also 
includes the magnetic quantum number as well, i.e., 

n = {f, 1,, K, (tZ)} (A4) 

The radial functions g.(r) and f . (r)  are given in terms of the spherical 
Bessel functions by 

N. 
g. (r) = -R-~j, (p.r) (A5) 

N.p .  sgn K . 
f .  (r) - R3--~e 2 + my)jr(p.r) (A6) 

where R is the radius of the cavity. Here, the total and orbital angular 
momenta j, l, and f are defined as functions of the quantum number K : 

j (K)  = tKI - I  (A7) 

l(K) =j(K) +1 sgn K (A8) 

f(K ) =jiK ) --�89 sgn K (A9) 

Finally, the symbol ~, denotes the radial quantum number, with ~, > 0 for 
positive and v < 0 for negative energies, respectively. Of course, a complete 
set of Dirac eigenfunctions must include the negative energy states as well. 
The quark momenta p. are determined by the linear boundary condition 
of the MIT bag model 

(i~/. ~+ 1)u.(r)I,=R = 0 (ml0) 

or, equivalently, by the solutions of the equation 

j ,(x.)  -~ x. sgn________~Kjr(x" ) = 0 (A11 ) 
o). + ~s 
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Here, we have introduced the dimensionless energy, momentum, and mass 
parameters, respectively, 

to. e.R =sgn 2 2 1/2 = ~, + ( x .  + L~) (A12)  

x. =p.R (A13) 

~f = mfR (A14) 

The normalization constant Nn is given by 

�9 N'2 2 = [2wn (to~ + K) + ~f] (A15) 

The solutions of the Dirac equation (A1) satisfying the boundary condition 
(A10) represent a complete and orthonormal set of Dirac spinors in the 
cavity, i.e., 

f u+(r)u.,(r) = 3.n, (A16) d3r 

Y, u*~(r)u.o(r') = 6~06~3)(r-r ') (A17) 
vK/~ 

where u.~(r) denotes tile component a of the Dirac spinor u.(r).  

A2. Gluons and Ghosts 

Let us now determine, in the Feynman gauge (A = 1), the cavity modes 
of  the gluon in a spherically symmetric and static cavity. The explicit 
solutions of  the time-independent d'Alembert equations 

(flm)]am(r) = 0 (A18) [A+ o~ o 

[ A +  ( [ l~ )2]a~(r )  = 0; X = ~ ,  d~, ~ (A19) 

where f ~  denotes the energy eigenvalue of the gluon, are given by the 
Hansen functions, which include the scalar 

a~  = W~ /jj(O~ Y~M(~), J>--0 (A20) 

and longitudinal multipole fields 

a ~ ( r ) =  W~ 1 . ze ~, f~Vjj(f~mr)YjM(r), J>-O (A21) R3/2 

Here. m = {N, J, (M)} denotes a complete set of radial and angular momen- 
tum quantum numbers and X stands for the polarization of the gluon. The 
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transverse magnetic and electric modes are given by 

a ~ ( r )  N ~  L - R3/2 [ j( j+l)]l /2 (jj(f~mr) rm( r ) ) ,  J-> 1 (A22) 

a ~ ( r ) -  N ~  1 L . ~ ^ 
R 3/2 ifl~ V x [ J ( J +  1)]1/2 (Jj(~mr) YjM(r)), J --> 1 (A23) 

respectively. The eigenvalues of the gluon ~ x  are determined by the linear 
boundary conditions of the MIT bag model 

�9 Va~ = 0 (A24) 

x t ~" am( )lr=g = 0 (A25) 

~x (V x a~(r))l,=R =0; X = ~ ,  ~t, ~ (A26) 

For the various multipole fields, we then arrive at three eigenvalue equations 

d o 
~ j j ( f l , ~ r ) l , = R  = 0 (A27) 

d 
dr [rj.,(f~r)]l,=R = o (A28) 

j~(~r)i~=R = 0 (A29) 

since the scalar and longitudinal multipole fields satisfy the same eigenvalue 
equation, i.e., 12 ~ = lI~. The corresponding normalization constants are 

0 --2 1 .2 0 [JVm] = ~ J , ( ~ ) [ 1  - J ( J +  1 ) / ( ~ ~  2] = [N~] -2 (A30) 

[N~] -2 = lj2j(@m~)[1 - J ( J +  1 ) / ( ~ )  2] (A31) 

[X~]-~  , . ~  , = ~JJ+l(~m) (A32) 

where we have introduced the dimensionless energy parameters 

= ~ m R ;  E = 0, ~ ,  ~t, ~ (A33) 

For compactness of the notation we introduce the functions 

f a ~  for/~ =Y.=0 

a:X(r) = l[0a~(r)]" for #z : 1, 2, 3 and X : ~f, ~/, ~ (A34) 
for all other #z and 5~ values 

The solutions of the d'Alembert equations (A18) and (A19) that satisfy the 
boundary conditions (A24)-(A26) are orthonormal, i.e., 

f a~m(r)*a~,'(r) d3r gXX't~mm, (A35) 

and they also satisfy the completeness relation 

~, gXXa~X(r)*a~X(r') = g~8(3)(r-- r') (A36) 
X m  
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Here we have introduced the metric tensor 

gO0= _gZe~e = _ g ~  = _ g ~  = 1 
(A37) 

gZ~' = 0 if E ~ E '  

The cavity modes a~(r) can also be written in terms of the spherical Bessel 
functions and the vector spherical harmonics as 

a ~ ( r ) -  W~ 1 ~+~ ajLJL(Ut~r)YJLM(r) (A38) 
R 3/2 (2J+ 1) 1/2 L=IJ-I[ 

A similar expansion holds for the curl of the cavity modes 

f~,~W,~ 1 J + l  E , Y-. ^ 

V xa~(r)  = - i  RS/~ (2J+ 1) 1/2 L=[~J-1I flJLJL(~')'mr)VjLM(r) (A39) 

The only nonvanishing coefficients a~r and flj~ are given by 

:e = ( j +  1)1/2, ~ =j1/2 
O/J,J + 1 O~J,J-1 

~t ( 2 j +  1 ) 1 / 2 ,  ~ = j 1 / 2 ,  ~t Ogj, j =  f l J ,  J + l  ]~J,J--1 = - ( J +  1) 1/2 ( A 4 0 )  

~ = ( j + l ) ' / 2 ,  f l ~ j = ( 2 J + l )  1/z ~l~J, J + l  = _ j 1 / 2  ~ J, J -1  

Under complex conjugation the gluon modes a~X(x) transform according to 

a ~ ( x ) ,  = M ~zE ~7~(-1) am*(x) (A41) 

where the set of quantum numbers rn* is defined by 

m* ={N, J, ( -M)}  (A42) 

and the phase ~ stands for 

f + l  for E = ~?, "~ 
(A43) 

r/~=]. 1-  for E = 0 , ~ /  

Finally the cavity modes and eigenvalues for the ghost fields in a spherically 
symmetric and static cavity are also given by the scalar modes a~ and 
the scalar or longitudinal eigenvalues II ~ since they satisfy the d'Alembert 
equation (A18) and the boundary condition (A24). 

APPENDIX B. THE F E Y N M A N  P R O P A G A T O R S  

B1. The Quark Propagator 

We now turn to the evaluation of  the Feynman propagators, which are 
given in terms of  vacuum expectation values of  time-ordered products of  
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two field operators. There are two nonvanishing Feynman propagators that 
involve the quark field operators. Using the expansions (4.15) and (4.18) 
and the anticommutation relations (4.19), we easily obtain 

^ A_I - A ^ <ol T( Ocfc,(x)l#c'f',~'( Y) )lO) 
= ~c.,@ X [cL-.,~(x)u-,,~,'(y)O(x~ ~ 

KI, Z 
v > 0  

- a.,.(x)u.,~,(y)O(y~176 exp(-ie,,Ix~176 (B1) 

The other nonvanishing vacuum expectation value is 

(01T($.f~, (x) $.,f,,~,(y) )J0) 
=,~c.,Sy~ X [u.,~(x)fi,,w(Y)O(x~ ~ 

Kl.x 
v > O  

-u_,,.(x)a_,,~,,(y)O(y~176 exp(-ie.lx~176 (B2) 

In equations (B1) and (B2) we have made use of the step function, which 
is defined by 

O(xO) = {01 x~  
x ~ > 0 (B3) 

B2.  T h e  G h o s t  P r o p a g a t o r  

Based on the expansions (4.23) and (4.24) and the anticommutation 
relations (4.25), we arrive at Feynman propagators involving the ghost field 
operators, which are given by 

(0J T(t~ (X),~b(y)) J0) = --(01 T( )~, (x) o3b (y)) J0) 

1 o o , 
=/gab ~M 2--~ a'~(x)am(y) exp(-ia~176176 (B4) 

N > 0  

These two propagators are the only nonvanishing vacuum expectation values 
we can build of two ghost field operators. The Feynman propagators 
involving the derivative of Xa are easily evaluated by calculating the deriva- 
tives of equation (B4) with respect to x and y, respectively, i.e., 

0 A A A ^ 

~ y ~  / = ~yg CO I T(r.Oa(x)Xb(Y))lO) ( B 6 )  



Canonical Quantization and Chromodynamics 973 

B3. The Giuon Propagators 

Based on the expansion (4.20) and the commutation relations (4.22), 
we arrive at the Feynman propagator for the gluon, which is given by 

EE 

(61T(A~(x),4~(y))I6)=--6ab j~x ~ a~X(x)a,~(Y) * exp(-if~lx~176 
N >O 

(B7) 

where the metric tensor gZZ is defined by equation (A37). 
We also need to know Feynman propagators involving derivatives of 

the field operators. In the case of  a single derivative, these can be written as 
A 

^ '~^ 0 . . . .  (6]TI ~ A~b(y)] 10)= (O[T(A~(x)A;(y))IO) (a8) 
\ Oxp ~x o 

In the case of two derivatives, however, we obtain 

T(OA~.(x) O.4~,(y)] 0 2 . . . .  
(61 \ ~xp ~y~ / I~)) Ox o Oy~ (OIT(AX(x)A;(y))IO) 

+ i ~ a b ~ o O ~ o - o g ~ V ~ ( 4 ) ( X  - -  y) (B9) 

Thus, here also we can in general take the derivatives of the vacuum 
expectation value of the time-ordered product of  the field operators except 
for the case O = o- = 0, where an additional delta term appears. 

APPENDIX C. THE VERTEX INTEGRALS 

C1. The Quark-Gluon Vertex 

Here we evaluate the vertex integrals that describe the absorption (or 
emission) of a gluon by a quark (Figure la). These integrals are defined as 

f Q.n',. = i ~i.(r)y~u,.,(r)a~X(r) d3r (C1) 

In Appendix D we will also use [see (A41)-(A43)] 

~5" I M "E 5" Q..,m = i ti.(r)y.u.,(r)a~X*(r) d3r = -Q.,.m ( - 1 )  ~xO..,m. = (Cla)  

where n and m stand for the quark and gluon quantum numbers, respec- 
tively, e.g., 

n =I f ,  ~, K, (~)}  (c2)  

m={N,J,(M)}, m*={N,J,(-M)} (C3) 
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and ~ for the polarization of the gluon 

= 0, 5f, ~ ,  ~ (C4) 

The scalar and longitudinal matrix elements, which transmit the instan- 
taneous "Coulomb" interaction between two quarks, are related by current 
conservation, i.e., 

5f En ' - -  En 0 
Q n n ' m  = n o  Qnn ,m  ( C 5 )  

We can easily separate the radial and angular integrations, yielding 

_ ~-3/2R32 f /z+ ^ ^ ~' ^ Q . . ' . . - - -  - . . ' . ,  x~ (r) YjM(r)x~,(r) dO; ~ = 0, Le, ~ (C6) 

- R-3/2R~ Xf(E) Yj~(r)x_~,(r) dO (C7) Qnn'rn --  ~ -~nn'm 

where the dependence on the magnetic quantum numbers is now contained 
in the angular matrix element. Integrating over the angular variables and 
using the abbreviation J = (2 J+  1) 1/2 o n e  arrives in terms of 3j-symbols, at 

I A /~' ^ X f  (E) YjM(r)x~,(r) dO  

=(-1)~+1/2(47r)1/2-/x M #']\�89 0 2 

which governs the angular momentum and parity selection rules. After some 
straightforward but tedious algebra, we obtain for the scalar and longitudinal 
radial matrix elements (Viollier et al., 1983) 

fo ' R..,,.~ = -tim~ j j ( O ~  r)S . . , ( r )r  2 dr (C9) 

- N o  f ~  o . o . o 
R. . , , .  - o { [OmrJ j+l (O, . r ) - J j j (Omr)]U. . , ( r )  

O,.  Jo 
+ ( K  - K ' ) j ~ ( O ~  r) T , , , ( r ) } r  dr  (C10) 

The transverse magnetic and electric radial matrix elements turn out to be 
of the form 

R..,m - [j(~--~]3-]1/2 Wm .o j j ( O ~ r )  T. . , (r)r  2 dr (C l l )  

R..,~ - [.1(j+ 1)1.~o ~ {J(J+l)jj(O~r)U..,(r) 
- I - ( K  - -  r �9 .~ ~ '  �9 ,~ K ) [ J j j ( ~ m r ) - O m r J j _ l ( O m r ) ] T . . , ( r ) } r d r  (C12) 
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Here we have introduced the radial functions 

S..,  = g.g., + L f . '  

T..,  = g. f . ,+f~g. ,  (C13) 

U.., = g . L ' - L g . '  

which are given in terms of the radial functions of the quarks in the initial 
and final states. 

C2. The Ghost -Gluon Vertex 

The vertex integrals that describe the absorption (or emission) of a 
gluon by a ghost (Figure lb) are given by integrals of the type 

ff 0 0 0 Tram,,.., = i am(r)am,(r)am,,(r) d3 r (C14) 

and 

Tram, m. --i  a~(r)  ~ 0 : �9 am,(r)a,.,,(r) d3r (C15) 

where m, m', and m" stand for the gluon and ghost quantum numbers, e.g., 

m = {N, J, (M)} (C16) 

The integral (C14) can be separated into a radial and an angular part, giving 

No Ago AgO m~, m,~, rn ,, rim, o~ Tram're"= ~ R J J ' J " ( ~ ~ ~  ~ 

x f Y~M(F) YJ'M,(F) YJ"M"(F) dO (C17) 

The radial integrals are defined by 

fo Rjj,j,,(O, O', 12") = j j(ar)jj .(ITr)j~,,(O"r)r 2 dr (C18) 

and the angular integrating yields 

f d12 YJ,M'(;) YJ"M"(~) Y2M(~) 

= M '  M"  M / \ O  0 ( 4 - - ~  2 (C19) 
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Separating the radial and angular integrations in the vertex function (C15), 
we obtain 

.Ac:~ M: ~' N-o 
~.,~, . ,  m~, m,~, m ,, ~ ~" "~' 

, ~ , ,  OljLOlj, L, Tram'm" = j j , R 9 / 2  LL' 

v; E" 0 f ^ ^ x Rt.L,j(l~ra, f~ra,, lira,,) Y~LM(r) " Yj,L,~,(r) Y~,,M,,(~) dO (C20) 

The angular integral is given in terms of 3j- and 6j-symbols as 

I ^ ^ YJLM (~)" YJ'L'M'(r)Y~"M"(r) df~ 

( J J" 
=(-1)L+J (4r z/2 \ M  M'  M" /  

(o f} • 0 O / ( L  1 (C21) 

C3.  The  Three -Gluon  Vertex  

We now turn to the evaluation of the three-gluon-vertex integral, which 
describes the absorption (or emission) of a gluon by another gluon 
(Figure lc). These integrals can be formulated in terms of the Tmm'ra" and 

~:E'  Tram,m,,, which have been defined previously, .and an additional integral of 
the type 

I [a~(r) x a,~,(r)] IV x a,~',,(r)] d3r (C22) T~,~,, m m , m , t  ~ ~ 

Separating the integration into a radial and an angular part, we arrive at 

.0 ~" A/.:z /r A/,z" 
T ~ ' ~ "  - ~ m " ~ , m ~ ' m ' ~ "  ra"  ~ ~ '  ~Y-." n , ' r~.  ~ ~ "  
- - r a , ~ ' m "  - j j , j , , R l l / 2  ~ OIJLO~J'L'PJ"L"I~LL'L"(SLm, S~m', ~ ' ~ ' )  

LL'L" 

x ( - i )  I [YJLM(~) X Yj'/:M'(~)] " YJ"L"M"(~) df~ (C23) 

where the angular integral is given in terms of 3j- and 9j-symbols by 

( - i )  f [YJLM(~) • YJ'L'M'(~)]" Y~"L"M"(~) dI) 

_ { 3 ~  1/2 . . . . . .  / L  L' 

- t--/k21r] 0 

x 1 M'  M"] (C24) 
Z t t t  
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C4. The Four-Gluon Vertex 

The four-gluon vertex, which describes the elementary interaction of 
four gluons (Figure ld), is given by integrals of the type 

xx. [ a~(r) 2,' o o F.~m'm,..~ . . . . .  ar~,(r) a m.,(r) a,.,,(r) d3r (C25) 

and 

~x2,'2,,,x,, f a~(r) 2,' 2," am,(r)a,.,,(r) a.~'~,,(r) d3r (C26) ~ m m ' m " m "  ~ " * 

For the first integral (C26) we obtain 
A/,x h/,x .~o A/,o 

V m m ' m " m "  - 
] ] 'R  6 

X ~ 2, X.' n ,',,~2, X' 0 O~ ~LOl . rL ,~ . , , , , . r , ,~ . , ,  fL, , ' ,  fL, ," ,  f~O,,,) 
LL" 

x f YjLt,4(1) " YJ'L'M'(~) YJ"~"(~) Y~"M"(~) df~ (C27) 

Here the radial integral is defined as 

fo" R~j,j,v,,,(O, fY, It", D") = jj(Dr)jj,(fYr)jj,,(f~"r)j~,,,(l}"r)r 2 dr (C28) 

and the angular integration yields 

f YJLm(~) " YJ'L'M'(1) Y~"M"(~) YJ'~"(~:) dO 

= ~  M'  K ] \ M "  M "  kK 47r 
A A  A 

x (2k + 1)JJ'(2J"+ 1)(2J" + 1)LL' 

[J" J'" L' J' 
x t 0  0 k ) ( o  0 ~){LJ' L ~} (C29) 

The second integral (C26) also separates into a radial and an angular part, 
yielding 

/V x .,,V "x' ~V "x" .h/'2," 
~W .T_.2, ,2,,,2, . . . . .  m ~ , m , ~ , m , , ~ , m , , ,  
- - m m ' m " m "  = ~ ,  ~L X '  2," X "  (2l J L  Ol j ' L '  Ol J " L "  Ol j , , ,  L "  

�9 J . ~ ' . J " ? " R  6 L L ' L " L "  

2, 5" E" X "  x Rjj,j,,j,,,(D m, fL.' ,  f~ m", l't m") 

x YJLM(~)" Yj,L,M,(r)Yj,,L,,~,,(r)'Yj,,,L,,,~,.,(r) df~ (C30) 
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Here one obtains for the angular integration 

I A A A 
Y~LM(r) " Yj,L,M,(r)Y,,,L,,~,,(r) " Yj,,,L,,,~,,,(r) d12 

M '  K J \ M "  M "  - K  4~" 

• (2k+  1).I)'.I".["/~/~'/~"/~" 

(o ' I} • 0 0 ] \ 0  0 0 L' L I J ( L "  L" 
(C31) 

APPENDIX D. INTERACTING TWO-PARTICLE SYSTEMS 

D1. Systems Consisting of Quarks and Antiquarks 

A system consisting of two quarks, two antiquarks, or a quark-antiquark 
pair that interact through the exchange of  a gluon can be represented by 
the Feynman diagrams in Figures 2a, 2b, or 2c, respectively. The energy 
shifts are obtained from equations (5.1) or (5.3), where I@k) denotes a 
two-particle eigenstate of the noninteracting Hamiltonian :/4o:, i.e., 

I~k)= ^+ ~+ O" (Dla)  ac~,l c2n2 ) 
A+ A+ ^ 

[~k)  = b c,., b ~:.~[O) ( D l b )  

a ....  b~:.210) (Dlc)  

After a straightforward calculation we arrive at the two-body operators 

A 2 / ; ~ \  /A , , \  

gEE 5; ~~ 
Q,,,mQp,pm ^+ A+ ^ ~ (D2a) 

x 2 ~  1 ~  + % , -  ep ac,,,ad,p,a~,aap 

Aa Aa 

g ~  Q~n_n,mO~_p_p,m .,+ ^ + . ,  .. 
x21)~ l ' ~ + e p , - e p  b=,.,bd,p,b~.bdp (DZb) 

A~ 

x g__A~ ~ -~ / 1 Q., . , .Q_p_p, , . I ._.~ _ -  ~- 21"~m k~Lm "1- ep,-- ep 
1 I ^+ ^ 

A-t- A 
l ~  + e . , - e .  a~,.,bd,p,a~.bdp 

(DZc) 
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As usual, a summation over all indices occurring repeatedly is understood. 
The two-body operators V~2 have, for all three cases under consideration, 
the form 

Of s 
V12 = ~ - F , -  F2 ~ tz12(J)K,2(J) (D3) 

J = 0  

where as is the "fine structure constant" of the strong interaction 

as = g 2/4r (D4) 

and R is the radius of the cavity. Here, the vector F stands for the eight 
generators of SU(3)r in the appropriate representation, i.e., 

~'�89 for quarks (D5) 
F = [ _  �89 T for antiquarks 

The two-body operators K12(J ) determine the angular momentum structure 
of the interaction V12. Their matrix elements are most easily given in terms 
of the function FjM(n, n'), 

0 , - l / , , - / z  M tz' 

This is, up to the parity selection rule and a factor of (47r) -~/2, the angular 
integral contained in the vertex function Q,,,,, [equation (C1)]. Now, we 
have 

J 

(n'x, n'2[K12(J)]n,, n2) = (2J§  1) 2 
M = - - J  

(t~i, a~lK,2(J)l~l, r~2) = (2J§  1) 

(n~, fi~lK,2(S)[nl, n2) = (2J+  1) 

(--1)MFjM(n'~, m)F,-M(n'2, n2) 

(D7a) 
J 

E (--1)MFjM(--nl,--FI~)FJ-M(--n2,--n~) 
M ~ - J  

(D7b) 

J 

Y. (--1)MFjM(n',, n,)F~_M(--t~2, - t~)  
M = - - J  

(D7c) 

for the quark-quark, antiquark-antiquark, and quark-antiquark interac- 
tions, respectively. As an example, the ket In, ~) describes here the direct 
product state built up of a quark with quantum numbers n and an antiquark 
with quantum numbers g. The operators /~z(J) originate in the radial 
integral in the vertex function Q..,m [equation (C1)]. In addition, they carry 
the parity selection rule, which we have omitted in the definition of K12(J). 
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With the help of the modified radial integrals 

1 - r/~gX~(- 1)l+s+r 
S.. , . ,  = R..,m (D8) 

2 

the matrix elements of/z12(J) are expressed as follows: 

, y rlzg xx x x 
(n l ,  n~ll~12(J)lnl n2) = ~ ' x 2 ( 2 J + l )  S. ; . , , .S .~ . : , .  

1 ( 1  1 ) 
2 :~ :~ ' + 1"~ + e .~-  e,,~ (D9a) R ~,,, l lm+e , , , - e , , ,  

r/~g ~ ~ 

•  { 1 1 
r,.b2t~, v |~...~. "~ ~- x / (D9b) 
/K &/'m \ m Ea{--  Er~t ~r 8fi~-- 8fi2 

(nl, a~la,=(J)ln,, a9 = E 2 rtgg g~ x 
Nz 3 2 J +  1 S"i"L"S-n2-nk"' 

1 (  1 ) 
4- ,~ (D9c) 

R ~ , .  F L . + e . l - e .  1 
,j 

The quark-antiquark system can interact, in addition to the one-gluon 
exchange discussed above, through the annihilation into a gluon, which is 
represented by the Feynman diagram in Fig. 2d. Of course, this interaction 
is also contained in the part of the interaction Hamiltonian shown in 
equation (5.5). The corresponding two-body operator is given by 

9 -  g2 x "x - Q . , _ ~ , ~ Q _ ~ . ~  
c 'd '  

" ac,.,ba,p,ac.bap 
x a ~ - e p - e ,  am+er 

Before writing down the two-body operator in first quantization, we have 
to cast the color and flavor factors into a suitable form. Using the complete- 
ness and trace-orthogonality of  S U ( N )  generators, we derive the following 
identies 

~6a,a6~. ~ +~ ( D l l )  
\ - 2 ]  ~'a' \ " 2 ]  ac = \ 2 ] ~,~ \ 2 ] dd'  

for SU(3)r and, assuming SU(2)isospin for the flavor group, 

l 
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The last term in equation (D12) contains the SU(2)isospin generators in the 
representations that correspond to quarks and antiquarks, respectively 

~�89 for quarks (D13) 
T = [ _  ~.r for antiquarks 

With the help of equations (Dll)  and (D12), the two-body operator in first 
quantization takes the form 

O~ s r 

VIe=~' [ �88  4] L tz12(J)K,2(J) 
J = O  

The angular momentum dependence of V12 is given by 

J 

(n~,a~lr,2(J)ln,,~2)=�89 2 
M = - - J  

(D14) 

(--1)MFjM(--fi2, n,)Fj_M(n~, -n'2) 

(D15) 

and/Zl2(J) contains the radial integrals and the parity selection rule 

(n~, ~[/x,2(J)ln,, ~2) = N~;3 2 J + l  S-n2,,mS,~-,~m 

x ~ l [  1 2  ~ z + ~ l i ]  (D16) 
R f~m ~m-e. ,-e~2 ~,,,+e.;+e~ 

D2. Systems Consisting of Quarks or Antiquarks and Gluons 

The quark-gluon interaction in second-order perturbation theory has 
two sources in the interaction Hamiltonian. The contribution we discuss 
first comes again from the part of Hint(t) shown in equation (5.5). It gives 
rise to the Compton diagrams in Figures 2e, 2f, 2h, and 2i. As opposed to 
the quark-quark case, the Compton interaction is obtained by contracting 
two quark fields in the Wick decomposition of the time-ordered product. 
There are two different, nonvanishing possibilities of contracting two of the 
four quark fields in equation (5:3). They lead to the direct (Figure 2e or 
Figure 2h) and the exchange (Figure 2f or Figure 2i) Compton diagrams. 

Evaluating the matrix elements Vk'k, equation (5.3), with the state 
vectors of the form 

- -  ^ 'Y+ A +  I t ~  [~k)- C .... a~2,,21o2 (D17a) 

I ' ~ =  ~+ ~+ ^ 
c . . . .  bc2.210) (D17b) 

for the quark-gluon or antiquark-gluon systems, respectively, we arrive at 
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the two-body operators 

2{Aa ' ~ "E,' 
l ~ = - g  k-2- 2]~,~ :r'f2(l-l,,,l-lm,)x x' ,/2\ep+e.,+l),,,.x' 

,'~IU+ ^ +  AZ ^ 
X Ca,m,ac,n,Camacn 

[ A a A \  1 / n  ~ tSx' r = g Z ~._f  " ,," | ~ i ",~ - , - l,~ v - p -  ,,'- ,,,' 
y ' f  'y., "E' 1/2 ~; 

,,X'+ ,~+ ^X 
X Ca,m,Oc,n,CamOcn 

for the direct diagrams in Figures 2e and 2h, and 

Qn,-pmQ-pnm, ~/_ 2[Xa h~,~ 6 1 { ~ "x' 
Y'f  X, 'E' 1/2 Y.. - - g  ~,2- 2 ]~,~ 2(a~D.,,,,) \ e p + e . , - - a m  

X Ca,m,ac,n,Camacn 

2[ Aa' Aa~ (~ 1 ( O~_._,,,,,, O~_'._p,,,, 
l) '=g k T  2,1~, y'I 2(a=am,)= s  1/2 ~ Ep__En..l_~'~m ,=' 

*'~.'+ ~ +  *.X # 
X Ca,m,Oc,n,CamOcn 

Buser, Viollier, and Zimak 

- + 

(D19a) 
s ",Y_,' 

Qp-,,,mQ~-,,pm,~ 
] 

(D19b) 

for the exchange Compton diagrams as shown in Figures 2f and 2i. In order 
to define the two-body operators V12 in first quantization, we still have to 
rearrange the color factors in equations (D18) and (D19). This is achieved 
with the help of the identity 

A~ Ab=l (4  ~ Aa 6,~b~) (D20) 
2 2 6\ 2 T  f a e c f b e d -  

NOW, we easily arrive at 

co 
" 1/12 1 [4(F, F2)2-1] Y. t * ~ ( p ) K ~ ( p )  (D21) 

p = l  

for the direct diagrams and 

~ s  E 
V12 = .-7-gd[4(F, �9 F2)2- 6F1 �9 F2- 11 I ~ E 2 ( p ) K E 2 ( p )  (D22) 

p = l  

for the exchange diagrams. Equations (D21) and (D22) are correct for both 
the quark-gluon and the antiquark-gluon systems. Here, one of the gen- 
erators in the product F1 �9 F2  acts on the quark or antiquark [see equation 
(D5)] and the other on the gluon, 

( F~)b~ = - - i f ,  b~ for gluons (D23) 

_e;oo .m 

(D18a) 
"y., 

O ' o . m O ;  om 

(D18b) 
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The angular momentum structure of the operator V,2 is again contained in 
the two-body operators KD(p)  and KE2(p), 

6 (s n;IK~(p)l~,lm,, n2)=~ ~ F.hM,(n, n2)F.qMi(n, n~) (D23a) 

6 
(s n~lKP2(p)lZ,m,, a~)=-~ 

6 
(s n[lgE(p) lZ,m, ,  n2)=7~ 

6 
(Y-lml, n'd K [2( p ) ls  m, , ~2) = -~ 

K = p  

F J I M I ( - - n 2 ,  Y l ) F j { r v i ~ ( - - n 2 ,  . )  ( D 2 3 b )  

F qM,(n~, n)FJiMi(n2, n) (D24a) 
~=p  

F qM,(n2,--fi~)FJiMi(n,--fi2) (D24b) 

The two-body operators/z D(p) and/z 1E2(p), which contain the radial integral 
of Q..,,., are given in the various cases by 

! r <xlm,,  n&l~.~(P)l~,"l, .2> = Z # 2 ( O ~  ~ O.~i ]1/2 
K = •  

- s  s s  C' t OX 1 "X 
{ S"~""IS"~2"' (D25a) 

x \e , ,  - e,,~-O.~'~ e.+e.~+f~7,,'[ 
, , -, u ~Tz[ 

2 X "5", , / 2  
1 It 

er = •  

SZ~ S~i _, , S~,_ SZl _, , \  -- 752-- nrtlt --n--n2rn I --n2nm 1 n - - n 2 m l |  - - ~ "  ) 
(DZ5b)  

, , , E ~TZ{ (E,m,, nd#,~(p)lZ, m,, rig= Z 
R 2 ( ( ]  s I~ El, ] 1/2 

K = •  

- s ~' 
x { S"~"~S""="I _ S.~ ~' z, "l- . . . .  S-~"='~I / (D26a) 

\ e .  - e.~+ f ~ i  i e. + e . i -  f ~  / 

t t 
( ] ~ , m l ,  fi~l#Ez(P)1311ml, /~25 = 2 97"~'1 

t< = •  p 

s s  
( S_g_~, . ,S_~_. ,< = =' \ 

(DZ6b) 

Throughout equations (D23)-(D26), the cases (a) and (b) correspond to 
the quark-gluon and antiquark-gluon systems, respectively. The ket Is n) 
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denotes the direct product  state consisting of a gluon with polarization X 
and quantum numbers m and a quark with quantum numbers n. 

We now turn to the second contribution to the quark-gluon interaction, 
which is transmitted via the exchange of  a virtual gluon and is depicted in 
Figures 2i and 2j. This process cannot take place in a theory based on an 
Abelian gauge group (e.g., quantum electrodynamics), where the structure 
constants fabe vanish. 

Before we evaluate the two-body operator ~ it is convenient to intro- 
"Tx'x2x3 " 0"3) that describe the three-gluon vertex. duce the functions Umv~2,,3ktrl, 

They are given by 

(J1 J2 J3 ) UXml?m22Xm33 (o.1, o.2) 
M, M 2 M 3  

= (4-~1/2R 5/21 T~'I'Y'2X3 "4- TX'3X1'E2 4- T2~ ,x  x x ~ (D27) 
k ~] ~ Ittll m2rn 3 -- ~m3ttll ttl 2 -- tn2m3ttll/ 

if none of the polarizations X~, X2, and X3 is scalar, and 

( J1 J2 J3 ) TrXlX20 : 
M~ M2 M3 Um,m:3~O'l,o.2) 

= (4~r)I/EgS/2(o.2~x~ - o '1~ ' , )  TX'X~ (028)  
~ m l m 2 m  3 

if one of  the gluons is scalar. Due to the restriction to physical external 
states, no other combination of  gluon polarizations can occur at the three- 
gluon vertex in second-order perturbation theory. The parameters o.t and 
o-2 can take the values +1 or -1 .  Obviously, they are not necessary in 
equation (D27); however, it is convenient to have the same notation for 
both equations (D27) and (D28). The integrals --mv~:~TX'X~ and --mlm2m3T x'x2~ are 
defined in Appendix C, equations (C15) and (C22), respectively. 

The two-body operators describing the one-gluon exchange between a 
quark or an antiquark and a gluon are easily found to be 

~r _ g 2 (  Ab'~ ~x'rlx,,g ~'~" (_1) M'+M" 
\ 2 ]c,c(--ifba'a)Sf'f4~:,(~X~'~,) 1/2 (47;)1/2R5/2 

J J' J" ~x"  uxx'x " ( 
x M - M '  - M " ]  ""'"m" tara're""--'+) 

x" x' x t- c~,m,a~,.,C~mac~ (D29a) 

2(~b) . ~x,~x,,g x'x" (-I) M'+M" 
V = - g  ---~ aox,, Lox ox,  W2 ~ (-/~'~) ~:'/ (4r 

' - * ~  m " x - -  m - -  m ' l  

J J' J" ~ o ~" r r~'~" c -  
x M - M '  - M " / " < - " - " ' m '  . . . .  "m", , + )  

( 1 1 ) §  ^ 
Ca,m.b~,,,,C~,mb~. (D29b) X X" ~x' x f ^ r  + n . , ,+n~ , -n~  n~;',,+ [-,,,- ~. 



Canonical Quantization and Chromodynamics 985 

They translate into the formalism of first quantization as 

V12 --'~ OLSe "F2  ~ 1~,2(J)K,2(J) (D30) 
R i J=o 

The generators in the scalar product F1 �9 F2 are again understood to act in 
the representations of SU(3)oolor that are appropriate to the different parti- 
cles [see equatiqns (DS) and (D23)]. 

The operator K12(J ) has the matrix elements 

(s n;[K,2(J)lX,ml, n2) 

= (-1)J+113(J+2)]  U2 ~, (--1)M+M'Fm(n~, n2) - M '  
M 

(E~m~, n'2iK,2(J)[E,m,, n2) 

= - [ ~ ( J + 2 ) ]  '/2 Y~ (--1)M+M'FjM(--~2, --t~'a{ J '  
M 21~_M, 

and the operator tx,z(J) is given by 

nz) 

( -  1 )J+l  "f~'~" i ~xg xx 
-- [24(J+2) ]  ~/2 ~x R 30x LOXl Ox; ~1/2 - - m \ - - m l - - m ~ , ,  

g~ H'~IX~ x (_ +) ( 1 

J J )  (D31a) 
- M  

- M  

4 x 1 i~ / (D32a) 
11 m - e,2+ e, 

llr~ - eft 2 + e.~ (D32b) 

( -1 )  r/xi~/xg xx 
-- [24(J+2)]1/2 N~X /?3.O.X (.O.X, FIx~ )1/2 . ~  - . m \ - - m l - - m ~  / 

( 1 
Hx~x~ 'x (_  +) _.OXl +.oX; X S~ f i2_ f i~  . . . .  ~m', , ~-~Xm - - m ,  - - m ~  

Here, the cases (a) and (b) refer to the quark-gluon and antiquark-gluon 
systems, respectively. 

D3. Systems Consisting of Gluons 

There are three different contributions to the gluon-gluon interaction 
in second-order perturbation theory: the one-gluon exchange, the annihila- 
tion into a gluon, and the four-gluon vertex, which are shown in Figures 
2k, 21, and 2m, respectively. The first two of these interactions emerge from 
the part of  the interaction Hamiltonian that is cubic in the gluon field 
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operators. Evaluating the matrix elements Vk'k in equation (5.3) with state 
vectors of the form 

]~k) = Ax,+ ~x2+ ,~, (D33) Caiml a2m2 U) 

and considering terms with one contraction of the gluon fields in the Wick 
expansion of the time-ordered product, we are still left with the sum of the 
gluon exchange and the annihilation interaction. 

The contribution due to the gluon exchange is easily separated, yielding 
the two-body operator 

r  - - (  is ~( ifL 7q:v"*7";"rls x,,, ~-1~ M"+M"+~I 
-471.RX-voa"a',",--. . ,oa"a~ , 4 x, ~; ~ '  1/2k 8 R ~'~ da ( ~'~ m~'~ m,~'~ m,,~'~ m,,, ) 

J '~ u~,,,,~L,(-, +) u~,,~,~(-, +) 
\ -  M "  i~I M / k -  M" - 2VI ~ + x" x M ]  ~'~r~ ~'~m "-~'~m 

A~,,,+ Ax"+ ~'  ~x (D34) X Ca,,,m,,,Ca,,m,,Ca,m,Cam 

For the annihilation, we arrive in a similar fashion at 

V= g2 rtx,,, rl:~,, rr2gXX r "~ ~' '+~'+~ 
(-/fb,,,,,o,,)(-/f~o,o) 32R,n~(n~n%,,n%,, ,n%,; , )m/~,  , 

X k - M  . . . .  M - M " ] k M '  1~ ~m"r~m"',. ,--)Um'rhm("~'-, 21-) 

( 1 1 x)~X,,,+ ̂ x,,+Ax, ^x (D35) X" "Y" {'- "2 X" r x fl~+fL,,,,+lL~,, f ~ , ~ - l L , , - f l  

Here, we have made use of the function U~13~&~(o-~, o'2) defined in equations 
(D27) and (D28). In first quantization, the corresponding two-body operator 
V~2 is given by 

O/s 
V~2=~F, "F2 ~ tz~2(J)K~2(J) (D36) 

J = 0  

This form applies to both the gluon exchange and the annihilation interac- 
tion. Of course, F~(i = 1, 2) denotes the vector of the eight generators of 
SU(3)r in the adjoint representation, which are connected to the structure 
constants by equation (D23). The angular momentum structure of V~2 is 
contained in K12(J). For the gluon exchange, K~2(J) is given by 

(X ~ m; , X r2m~l g12(  J ) lXl  m l  , ~ . 2 m 2 )  

=2(2J+  1) Y~ (-1) Mi+M~+m 
M 

( J~ J Jl ']( J'~ J -/2 ) (D37) 
Xk-M~ M M~,Ik-M'2 - M  M2 
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while for the annihilation we have 

(X~m~, X'2m'2lK,2(J)[]~lml ,  X2rn2) 

= 2(2J + 1) • (-1)  M~+M;+M 
M 

X (  J~ ! J j ~  x ( J1 J J2 ) ( D 3 8 )  

k - M 1  - M  - M ~ ] k M 1  M M 2  

Here, the ket [s s denotes the direct product state of two gluons 
with polarizations 5". 1 and s and quantum numbers m 1 and m2, respectively. 
The matrix elements of the operators/z12(J) are 

(s s  s 

16(2J+ 1) R4(~-'~:~'~') x20.z~ .OX2 ]1/2 ,,,1 ,n2- - ,,, {- - ,n~ l 

EZ 

( 1 1 ) (D39) 
x ~ + . o 2  ~ _ o ~ 1  + o ~ + o 2 ;  :~" 

- -m[  - -m I - -m  - -  W/~ -- ~'~ m 2 

for the gluon exchange and 

(s ~,~mt2[~12(J)[~,lml,  s 

1 1 

16(2J+ 1) R4(['~El~')]g2{-)s {-/'g~ ]1/2 
* -  \ . . m l . . m 2 ~ . m { . . m ~ /  

x 2 ~ . . . . .  ~, , - )  +) NS~ ~'~m --rnlmm2\ 

( , , ) 
x z + 2; + "~; + :~_ l - ) , , , l _D ,  m2 

for the annihilation. 
We now turn to the gluon-gluon interaction, which is described by the 

elementary four-gluon vertex, Figure 2m. The source of this process is the 
part of the interaction Hamiltonian that is proportional to g2. Therefore, 
the contribution in second-order perturbation theory to the matrix element 
Vk'k is found in the first term of equation (5.3). Using state vectors of the 
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form (D33), we arrive at the two-body operator 

1 g2 1 M"+M" f'=~ (a ~a ~,,ff~,,,a.~,,,,),/:,(- ~f~o,,,.,)(- ~f~o,,o) n:<,,,n~,,(- 1) 
~ s  ' ~ " ~ ' Y - " ~  ~ " ~ " ~ " Y  ^ ~ , , , +  ^ ~ ; , , +  A ' y /  a ~  
. . . . . . z .  i .  X (2F,,,,,,mm,,m,- Fm,,,,,,,,,,,,m - F,,,,,,m,,,.,,~)c,~,,,,,,,,,c,,.m,,C,,,,,,,c,~,,, (D41) 

The integral --,.,.',."m'~'Z~'~"~" is given in Appendix C, equation (C26). 
In order to obtain a factorization of the angular momentum contribution 

^ ~ 7 ~ ; ~ , ~ , , E , , ,  in V, we decompose -- ,,,,,,' m" m" as follows: 

F~'~',z,,, r  ' w i  - / , t l  I'1 

=.~33~ (21+l)(-1)'(D l J ' ] (  J" l J"]Tr.~,r.,,~z,,, (,, 
4 .  k M ' J k M "  - k  Mini  -mm'm'm''x'' (D42) 

The form of --mm',,,",,,".T'~Z'ze"z" (l~.. is easily determined from equations (C30) and 
(C31). In first quantization, the corresponding two-body operator 1/12 is 
given by 

1/12 =RF~ �9 F2 ~=o [ l ' ~ ( 1 ) K ~ ( l ) + t x ~ ( l ) K ~ ( 1 ) + ~ C ( l ) K C ( l ) ]  (D43) 

The F is again the vector of the SU(3)~o~or generators in the eight-dimensional 
adjoint representation. The matrix elements of the K~(1) operators are 

(X,m,; ' X2m21K12(1)l~.lm1; ' A ~2m2) 

=2(21+1) Z (-1) M;+M~+M 
M 

X k - M ~  M M I / k - M ' 2  - M  M2 
(D44a) 

(E~m~, ~rn '21r ~2(1)lXlml, X2m2) 

=2(21+1) E (-1)  ~ + ~ + ~  
M 

X k - M ~  - M  - M ~ J k M 1  M Mz 
(D44b) 

; ! t v C (E,m~, Z2m2iK,2( l ) iElml ,  ]~2m2) 

=2(21+1) Y~ (-1)  M~+M~+~ 
M 

( J~ 1 -/2 ] (  J~ l J1]  
X k - M ~  M M 2 ] k - M ' 2  - M  M~ 

(D44c) I 
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The/dq2(/) operators are given in terms of the T-function of equation (D42) 
a s  

v ! ! t A (•lml, ~.2m2[lz12(l)l~.lm1, X2m2) 

_ r/xl rt'z~ x~x~x~ " F -  ( I'~ (D45a) RR2(Ox,.f)x20x ~ t~x~ ]1/2 " m l m i m ~ m 2 k ' ]  
v . ~ . . m l . . m 2 . . m ~ . . r n ~ y  

t ! ! V B (X~m,, X2m2ltZ~z(1)lXlml, X2m2) 

= 2 X 1 ~----X-~2~X ~ X~ -112 Tmlm~mlm2(1) 8R (f~,. f~,.~fZ,.~tl,.~) 
(D45b) 

"q~i'qx~ xlv_zx~x ~ 
2 X t ~'2 "~'l ~'2 l / 2 r m i m 2 m 2 m l ( l )  8R (~ml~,~2tl,.f~m~) 

(D45c) 

D4. Special Cases 

Let us now consider the interactions between particles with the lowest 
possible angular momentum, i.e., K = + l ( j  = �89 for quarks and J = 1 for the 
(transverse) gluons. Here, the two-body operators K12 given in Sections 
D1-D3 can easily be expressed in terms of products of one-body spin 
operators S. Using the Wigner-Eckart theorem, we obtain the matrix 
elements of these one-body operators in spherical (instead of Cartesian) 
coordinates as 

(t_~,n,_al215{ �89 1 �89 
(Sk) , . ,m_|  ~ "J ~ 2 \ - r n '  k forquarks (D46a) 

-[ (1 ) r e + l / 2  ~ 2 1 1 
- ( - 1 )  ~/~ for antiquarks (D46b) 

m k -m'  

1 1) 
= ( - 1 )  ~ k - M '  k for gluons (D46c) 

The scalar product in spherical coordinates is given by 

1 

S1" S2 = E (--1)kslkS2 k (D47) 
k = - t  

With the help of equations (D46) and (D47), the two-body operators 
Kt2 may be rewritten as shown in Table IX, where we use the abbreviation 

$12 = $1 �9 $2 (D48) 
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The Two-Body Operators K12(J ) that Contain  the Spin Structure of  the Various 
Diagrams a 

Diagram KI2(0 ) Kl2(1 ) K12(2 ) 

1 4S12 0 

- S12 I +  S12 0 
! 
4 

- -  SI2 1 Sl2 �89 + 

- -  S12 1 - $12 �89 

1 $12 0 

~ 2 8 2 
S12 --~-{- $12+ 2S12 

2 2 2 --~-~S12 - 2 +  S~2 + S~2 2 1 2 ~ + S l E + g S 1 2  

SI2 - - ] +  S12+2St2  
2 2 2 _~q_~SI2 _2 + S12_l_ S22 2 1 2 + S12 "~" 3S12 

2 2 2 2 __~_~_ ~S12 _1_ ~S12 2__ S212 2 2 1 2 ~-- ~Si2 +xS12 

~The quarks and  gluons in the initial and  final states occupy the lowest angular  m o m e n t u m  
states, j =�89 for quarks and  J = 1 for gluons.  Note that  $12 = S~ �9 S 2. 

Due to the conservation of  angular momentum at the vertices, only the first 
two or three terms in the sums that occur in the expressions for the two-body 
operators V12 are nonzero. Using the results of  Table IX, we arrive in a 
straightforward way at the dimensionless interaction operators,  which are 
connected to the V12 by 

V12 = (g 2/ 4~R  )A12 (D49) 

for the various Feynman diagrams as shown in Table I. Note that we have 
rearranged the terms in the gluon-gluon interaction in order to obtain the 
same form of A12 for the three different diagrams. Accordingly, we use here 
the operators p12, which are certain linear combinations of  the/x~2. In order 
not to overburden the formulas,  we use also the shorthand 

F12 = F~ �9 F 2 ,  T12 = T1 �9 T2 (D50) 

for the scalar product  of  the SU(3)color and S U ( 2 ) i s o s p i n  generators, respec- 
tively. 
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The matrix elements of  the two-body operators/z~2 and P12 are given 
in Tables II-IV. They correspond to the lowest energy cavity states, i.e., 

= ~2.042787 K = -1  
R e , ,  [3.811539 K = +1 massless quarks 

R a ~  = [2.743707 E = d d  
[4.493409 E = ~ gluons 

(D51) 

In the quark-quark and gluon-gluon cases, where two different direct 
product  states can have the same (asymptotic) energy, we use the (anti) 
symmetrized states 

for the quarks and 

1 ( - ,  + L  = [(-,  +) • (+, -)]  
V Z  

42 

for the gluons in an obvious notation. 

(D52) 

(D53) 

APPENDIX E. CONVENTIONS AND UNITS 

We use the flat Minkowski space metric g ~  with the signature 

g ~  = g ~  = diag(1, -1 ,  -1 ,  -1 ) ,  g~ = 6~ (El)  

Greek indices (/z, v , . . . )  can take the values 0, 1, 2, and 3, Latin indices 
(k, I , . . . )  the values 1, 2, and 3 when they refer to space-time. They are 
raised or lowered with g~'~, 

x ~" = g~'"x , , ,  x~, = g ~ , , x  ~" 

Xo = x ~ x k  = --X k = --[X] k' (E2) 

The 4 x 4 Dirac y matrices that satisfy the Clifford algebra 

{y~', y '}  : 2g "~ (E3) 

may be represented as follows: 

,y0 = (~ 00) ,  'yk=-(_;k ~) (E4) 
where the cr k are the 2 x 2 Pauli matrices 

Grlm(~ :), O.2=(0i ;i), O'3~'(: ? 1 )  (E5) 
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Under  Hermit ian conjugat ion,  we have 

(o.k)+ : o.k, (,y/.L)+ = 3,0y~y0 = Y~ (E6) 

We employ  the usual  3j-, 6j-, 9j-symbols ,  vector  spherical harmonics ,  
and  spherical  spinors as defined by E d m o n d s  (1957). 

Th roughou t  the text, we use "na tu ra l "  units with 

fi = c = 1 (E7) 

The correct  factors o f  fi and c, which have to be suppl ied in the various 
formulas ,  are easily found  by considering the dimensions.  As an example,  
equat ions  (A12) and (A14) should  be replaced by 

to, = e n R /  tic and ~f = mfRc  / fi (ES) 

Some useful numerical  relations are 

hc = 197.3285851 MeV fm 
(E9) 

1 GeV = 5.06768963 tic fm -~ 
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